Claim Missing Document
Check
Articles

Found 9 Documents
Search
Journal : Eksplorium : Buletin Pusat Pengembangan Bahan Galian Nuklir

Estimasi Sumber Daya Uranium Tipe Batupasir di Sektor Aloban, Sibolga, Tapanuli Tengah Ciputra, Roni Cahya; Muhammad, Adi Gunawan; Adimedha, Tyto Baskara; Syaeful, Heri
EKSPLORIUM Vol. 40 No. 1 (2019): MEI 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.1.5360

Abstract

Uranium explorations in Sibolga Area have been conducted since 1978 by BATAN and successfully result in sandstone-type uranium mineralization. Research related to uranium mineralization concept on sandstone and conglomerate at Aloban Sector, Sibolga has been conducted through 22 boreholes data which resulted in the geological section, anomaly distribution along with radiometry counting and geochemistry data. This research objective is to obtain uranium resources in Aloban Sector by correlating radiometry counting and geochemical data from previous research by using a geostatistic approach. Geostatistical processing using SGeMS software shows a correlation coefficient of 0.5 so that the radiometry and geochemical data are interpreted to have a good correlation. Uranium Resources estimation was measured on Conglomerate I and Sandstone I units which are considered to have thick and wide mineralization distribution. The average uranium grade for Conglomerate I and Sandstone I units are 173.05 ppm U and 161.54 ppm U respectively. Uranium resource estimation at Aloban Sector is 415 tons as inferred resources.
Peran Kontaminasi Kerak pada Diferensiasi Magma Pembentuk Batuan Vulkanik Sungai Ampalas, Mamuju, Sulawesi Barat Draniswari, Windi Anarta; Kusuma, Sekar Indah Tri; Adimedha, Tyto Baskara; Sukadana, I Gde
EKSPLORIUM Vol. 41 No. 2 (2020): NOVEMBER 2020
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2020.41.2.6040

Abstract

Anomalous radiometry has been found in Ampalas River Area on volcanic rock boulder. The values measured from gamma spectrometer are 787 ppm eU and 223 ppm eTh. This discovery is promising for exploration development. Further study need to figure the radioactive mineral bearing rock characteristic from in-situ samples. The research aim is to determine the petrology and geochemical characteristics of Ampalas volcanic rocks as preliminary study to find radioactive mineral accumulation process of Ampalas volcanic rocks. The methodologies are field observation, rock sampling, petrography, and X-Ray fluorescence (XRF) analyses. The Ampalas volcanic rocks consist of phonolite, phoidite, and phoid syenite. Their textures are porphyritic, flow, pyroxene rim, zoning, pseudo-leucite, corrosion, mafic inclusions, and sieve. The geochemical characteristics show high alkalinity and radioactive mineral enrichment disseminating on rock. The magmatic processes which play a significant role in radioactive mineral-bearing rocks formation are crystal fractionations (leucite and alkaline feldspar fractionations), continental crust assimilation, and magma mixing. Long interaction between magma and crust creates advanced magma differentiation causing higher uranium and thorium accumulation.
Distribution and Mineralogical Characteristic of Raya Volcanics, West Kalimantan Draniswari, Windi Anarta; Pratiwi, Fadiah; Ngadenin; Sukadana, I Gde; Adimedha, Tyto Baskara; Ciputra, Roni Cahya; Argianto, Ekky Novia Stasia; Aminarthi, Erwina; Supraba, Vertika Dhianda
EKSPLORIUM Vol. 42 No. 2 (2021): NOVEMBER 2021
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2021.42.2.6511

Abstract

There are several volcanic rocks in a radius of 150 km from where the Nuclear Power Plant (NPP) site project in West Kalimantan. The Mesozoic volcanic rocks have not been characterized for volcanic hazard evaluation purposes due to their old age. However, the distribution of Raya Volcanic Rocks that covers the site area and the wider area up to 150 kilometers from the site makes this rock group quite important to be characterized to find out how its activities in the past. This paper’s objective is to comprehend the distribution and characteristics of Raya Volcanic Rocks for NPP site volcanic hazard evaluation purposes. Fieldwork and lineament analyses were conducted to map and interpret the distribution of Raya Volcanic Rocks while mineralogical analysis using petrography and micro XRF were conducted to characterize the Raya Volcanic Rocks. The distribution of Raya Volcanic Rocks that relatively show NNW–SSE orientation is probably controlled by the NNW–SSE fault system. The analyses resulted that Raya Volcanic Rocks erupted as lava flows derived from mafic magma as a product of mantle partial melting that underwent crystal fractionation, injection of hotter/more Ca-rich magma, and magma mixing on an open-system magmatic process.
Distribution and Characteristics of Rare Earth Elements in Uranium-Ore Deposits from Rirang Area, West Kalimantan Province, Indonesia Adimedha, Tyto Baskara; Farenzo, Rayhan Aldizan; Sukadana, I Gde; Nugraheni, Rosmalia Dita; Pratiwi, Fadiah; Ciputra, Roni Cahya; Indrastomo, Frederikus Dian; Syaeful, Heri; Rachael, Yoshi
EKSPLORIUM Vol. 45 No. 1 (2024): MAY 2024
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.7058

Abstract

Uranium and rare earth elements (REE) are essential elements for the development of green environmentally friendly, and sustainable energy. To meet the increasing demand for these raw materials, Indonesia has taken steps to explore and map potential deposits, including the Rirang Sector in Melawi Regency, West Kalimantan. However, the available information on the mineralization of these elements in the area is limited. Therefore, this study aimed to provide a detailed characterization on the petrology and geochemical characteristics of uranium ore and to synthesize the mineral genesis of uranium and REE-bearing ore in the Rirang Sector. The analytical methods used included petrography, micro-XRF, and geochemical analysis. The results showed that uranium mineralization was present in brannerites, uranophane, and swamboite associated with tourmaline and monazite ore. Similarly, REE concentrations were hosted by REE-bearing minerals, such as monazite, xenotime, and loparite. Geochemically, the uranium concentration in the monazite ore ranged from 1,110 – 28,440 ppm, while the total REE (TREE) concentration varied between 85,320 to 138,488 ppm. The formation of uranium and REE mineralization were due to the metasomatism process and its association with the Na-rich fluid of felsic intrusion. Notably, the weathering process did not enrich uranium and REE content in the soil but rather decreased it due to the leaching process and the absence of clay minerals capable of absorbing the REE cations on the surface of clay crystal structures.
Characterization of Radioactive and Rare Earth Elements in Heavy Minerals from River Sediments in Marau Region, Ketapang, West Kalimantan Pratiwi, Fadiah; Rachael, Yoshi; Widodo; Fauzi, Rachman; Madyaningarum, Nunik; Adimedha, Tyto Baskara; Indrastomo, Frederikus Dian; Sukadana, I Gde
EKSPLORIUM Vol. 45 No. 1 (2024): MAY 2024
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.6971

Abstract

Alluvium deposits from the Kendawangan River located in Marau, Ketapang, West Kalimantan have been known for their radioactive and rare earth mineral potential. In this paper, heavy minerals taken from alluvium deposits will be characterized to determine the elemental distribution of uranium, thorium, and rare earth elements in each mineral and their mineralogical composition. The samples are taken by panning and prepared using the flotation method to obtain heavy mineral concentrates. Geochemical analysis was carried out using a Bruker M4 Tornado plus Micro-XRF and continued with mineralogical analysis using AMICS (Advanced Mineral Identification and Characterization System) software. It was found that the distribution of heavy minerals from the sand samples was dominated by manganoan ilmenite, ilmenite, rutile, zircon, magnetite, and monazite, as well as thorite, cassiterite, xenotime, allanite, and other minerals in small quantities. Uranium, thorium, and rare earth elements are found in monazite, thorite, xenotime, zircon, and allanite.
Magmatic Evolution of Dago Volcano, West Java, Indonesia Adimedha, Tyto Baskara; Harijoko, Agung; Handini, Esti; Sukadana, I Gde; Syaeful, Heri; Ciputra, Roni Cahya; Rosianna, Ilsa; Indrastomo, Frederikus Dian; Pratiwi, Fadiah; Rachael, Yoshi
EKSPLORIUM Vol. 44 No. 1 (2023): MAY 2023
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2023.6873

Abstract

Dago Volcano is a product of Miocene Sunda Arc volcanism located southeast of the capital city of Jakarta. The morphological change from flat lava flow to steeper lava morphology implies a process of magma evolution under Dago Volcano. This research provides an overview of the magma evolution that occurs on this volcano. The methods used include volcanostratigraphic analysis, petrographic analysis, mineral chemistry, and whole-rock geochemistry. The volcanostratigraphy of Dago Volcano is composed of two eruption centers and a flank eruption forming lava and cinder cones products. The mineralogical associations of Dago Volcano products include plagioclase, olivine, and clinopyroxene. The mineral textures of Dago edifices show zoning, sieve, and reaction rims textures. Geochemically, the Dago Volcano product has a magma affinity of med-K calc-alkaline with quite high levels of MgO, Ni, and Cr approaching the characteristics of primitive magma. The magma evolution process of Dago Volcano includes fractional crystallization and magma mixing which originates from the same magma source.
Radioactive Mineral Distribution on Tin Placer Deposits of Southeast Asia Tin Belt Granite in Bangka Island Ngadenin, Ngadenin; Sukadana, I Gde; Muhammad, Adi Gunawan; Indrastomo, Frederikus Dian; Rosianna, Ilsa; Ciputra, Roni Cahya; Adimedha, Tyto Baskara; Pratiwi, Fadiah; Rachael, Yoshi
EKSPLORIUM Vol. 44 No. 2 (2023): NOVEMBER 2023
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2023.6969

Abstract

Bangka Island is an area rich in primary and secondary tin deposits. Tin deposits are formed around the contact between granite and older rocks, while secondary tin deposits are formed in the modern channels and paleochannels. Many previous researchers have researched radioactive minerals in primary tin deposits and modern channel deposits, but research on radioactive minerals in paleo channel deposits has never been carried out. The characterization of radioactive minerals in paleo channel deposits was done in this study to determine the potency of radioactive minerals in secondary tin deposits by comparing the content of radioactive minerals in paleochannels with modern channels and tin mine tailing deposits. The data used were mineralogical data and radioactivity data, along with the uranium and thorium content of the rocks from several previous studies. Data showed significant mineral content differences in paleo channel, modern channel, and tin mine tailings deposits. Mineral (monazite and zircon) content in tin mine tailing deposits was the highest. Source rocks for the radioactive minerals monazite and zircon are predicted to be the granitic rocks or tourmaline quartz veins of primary tin deposits. The radioactivity value of rocks in the paleo channel is relatively the same as the modern channel, ranging from 20 to 150 c/s. Uranium content in paleo channel is the same as modern channel deposits, ranging from 10 to 15 ppm eU. The thorium content of the rocks in the paleo channel ranges from 1 to 60 ppm eTh, while in the modern channel, it ranges from 1 to 45 ppm eTh. The radioactivity value and uranium content of the rocks are less effective for determining potential areas of radioactive minerals in placer tin deposits. In contrast, data on thorium content are quite effective for determining potential areas of radioactive minerals in placer tin deposits.
Characteristics and Genesis of Mount Pengki: A Scoria Cone of Dago Volcano, West Java, Indonesia Adimedha, Tyto Baskara; Ciputra, Roni Cahya; Rosianna, Ilsa; Sukadana, I Gde; Harijoko, Agung; Handini, Esti; Pratiwi, Fadiah; Indrastomo, Frederikus Dian; Syaeful, Heri; Rachael, Yoshi; Sukmawan, I Gusti Made
EKSPLORIUM Vol. 45 No. 2 (2024): NOVEMBER 2024
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2024.7131

Abstract

Scoria cones are a typical product of volcanic activity constructed by the bomb and lapilli-sized pyroclasts formed by Strombolian eruption. Mount Pengki is a scoria cone found in Miocene Dago Volcano, West Java. Mount Pengki was a remnant of a Miocene volcano that was exceptionally well preserved and exposed. This scoria cone contains layers of scoria beds and a lava flow unit. The study aims to characterize the exposed scoria bed deposits and investigate the eruptive history and degradation process of Mount Pengki. Field observation, including measured sections and detailed characterizations of the Mount Pengki quarry, allows us to observe its volcanic sequence from its internal structure toward the surface. Morphometric analysis of Mount Pengki can describe the degradation process undergone by the scoria cone. The early phase deposits were characterized by massive to weakly bedded, poorly sorted, clast-supported beds mainly composed of coarse lapilli to bombs/blocks scoria grain. The middle phase deposit typically shows well-stratified, well-sorted, clast-supported scoria beds with coarse ash to coarse lapilli grain size. The late phase deposit is similar to the middle phase deposit, with additional features of coarser-grain, reverse grading, and clast-supported lenticular beds. Eruptive mechanisms involved in the formation of Mount Pengki include ballistic transport of clasts, fallout deposition, and grain avalanching process. The degradation process was likely influenced by prolonged exposure to weathering, cone rim collapse, and regional deformation processes.
Lithological Discrimination Based on Radiometric Data: Case Study of Rabau Sector, West Kalimantan and Salumati Sector, West Sulawesi Maulana, Muhammad Wira; Ciputra, Roni Cahya; Iskandarsyah, Iskandarsyah; Adimedha, Tyto Baskara; Sukadana, I Gde; Indrastomo, Frederikus Dian; Syaeful, Heri; Pratiwi, Fadiah; Rachael, Yoshi; Mardania, Faneza Nur; Kamajati, Dhatu; Rahmawati, Putri; Garwan, Mirna Berliana
EKSPLORIUM Vol. 46 No. 1 (2025): MAY 2025
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2025.11475

Abstract

This study evaluates the applicability of radiometric methods for lithological discrimination in tropical environments, with a focus on two uranium exploration sites in Indonesia: the Rabau Sector in West Kalimantan and the Salumati Sector in West Sulawesi. These locations were selected to represent various lithologies within the uranium exploration program. The aim is to determine whether gamma-ray spectrometry, commonly effective in arid environments, can also delineate lithological boundaries and alteration zones under conditions of intense weathering and dense vegetation cover of tropical area. Ground-based radiometric data were collected using the RS-125 gamma spectrometer to record the concentration of potassium (K), equivalent uranium (eU), and equivalent thorium (eTh). Data processing involved anisotropy analysis, geostatistical interpolation using ordinary kriging, ternary RGB composite mapping, and delineation of radiometric domains. The resulting radiometric maps were then qualitatively compared with existing geological maps for validation. The results show that radiometric signatures, particularly eTh and eU, can effectively distinguish rock units with differing genesis or degrees of alteration, despite tropical conditions. In Rabau, where lithologies share a common protolith, elevated eU concentrations correspond to hornfels, while metatuff and metasiltstone remain indistinguishable, indicating the influence of thermal metamorphism on radiometric responses. In Salumati, eTh and eU zoning within phonolite suggest compositional variability or differential alteration, and elevated eU in altered tuff reflects uranium remobilization in smectite-rich zones. These findings demonstrate that, despite the challenges posed by tropical climates, radiometric mapping remains a viable tool for lithological discrimination and early-stage uranium exploration in Indonesia. This work extends the application of radiometric techniques beyond arid environments and underscores the need to integrate radiometric interpretation with genetic, provenance, and alteration context in tropical geological mapping.