Stroke is a non-communicable disease that can occur suddenly due to local or global disruption of brain function. The early symptoms of stroke are often difficult to recognize, causing many sufferers not to realize or feel the signs, so the death rate is quite high. This research aims to determine the ability of the Backpropagation Neural Network (BPNN) method in classifying stroke. The dataset used consists of 4891 medical records with stroke and non-stroke classes which include ten relevant variables (gender, age, hypertension, history of heart disease, BMI, blood sugar levels, and so on). This research runs three scenarios with the BPNN architecture model [19:25:1], [19:29:1], and [19:35:1] using a certain combination of variables, namely the comparison of training and testing data (90:10, 80 :20, 70:30), and learning rate 0.1; 0.01; 0.001. Test results with the highest average accuracy level of 96.14% were achieved with an architectural model of [19:29:1], a learning rate of 0.001, and a training and testing data distribution of 80:20. Based on testing, it can be concluded that BPNN is considered capable of classifying stroke