Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JISA (Jurnal Informatika dan Sains)

Detection of Hate-Speech Tweets Based on Deep Learning: A Review Miran, Ara Zozan; Abdulazeez, Adnan Mohsin
JISA(Jurnal Informatika dan Sains) Vol 6, No 2 (2023): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v6i2.1813

Abstract

Cybercrime, cyberbullying, and hate speech have all increased in conjunction with the use of the internet and social media. The scope of hate speech knows no bounds or organizational or individual boundaries. This disorder affects many people in diverse ways. It can be harsh, offensive, or discriminating depending on the target's gender, race, political opinions, religious intolerance, nationality, human color, disability, ethnicity, sexual orientation, or status as an immigrant. Authorities and academics are investigating new methods for identifying hate speech on social media platforms like Facebook and Twitter. This study adds to the ongoing discussion about creating safer digital spaces while balancing limiting hate speech and protecting freedom of speech.   Partnerships between researchers, platform developers, and communities are crucial in creating efficient and ethical content moderation systems on Twitter and other social media sites. For this reason, multiple methodologies, models, and algorithms are employed. This study presents a thorough analysis of hate speech in numerous research publications. Each article has been thoroughly examined, including evaluating the algorithms or methodologies used, databases, classification techniques, and the findings achieved.   In addition, comprehensive discussions were held on all the examined papers, explicitly focusing on consuming deep learning techniques to detect hate speech.
Network Intrusion Detection Based on Machine Learning Classification Algorithms: A Review Younis, Aqeel Hanash; Abdulazeez, Adnan Mohsin
JISA(Jurnal Informatika dan Sains) Vol 7, No 1 (2024): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v7i1.2056

Abstract

The worldwide internet continues to spread, presenting numerous escalating hazards with significant potential. Existing static detection systems necessitate frequent updates to signature-based databases and solely detect known malicious threats. Efforts are currently being made to develop network intrusion detection systems that can utilize machine learning techniques to accurately detect and classify hazardous content. This would result in a decrease in the overall workload required. Network Intrusion Detection Systems are created with a diverse range of machine learning algorithms. The objective of the review is to provide a comprehensive overview of the existing machine learning-based intrusion detection systems, with the aim of assisting those involved in the development of network intrusion detection systems.
Empowering Diagnosis: A Review On Deep Learning Applications for COVID-19 and Pneumonia in X-Ray Images Yaqoub, Karin Younis; Abdulazeez, Adnan Mohsin
JISA(Jurnal Informatika dan Sains) Vol 7, No 1 (2024): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v7i1.2024

Abstract

The emergence of COVID-19, a highly contagious virus capable of infecting both the upper and lower respiratory tracts, has led to one of the deadliest pandemics in modern history, claiming millions of lives worldwide. Early and accurate detection of this rapidly spreading disease is crucial for effective containment and saving lives. Chest X-ray (CXR) stands out as a promising diagnostic tool due to its accessibility, affordability, and long-term sample preservation. However, distinguishing COVID-19 pneumonia from other respiratory ailments poses a significant challenge. This article delves into various approaches utilized for COVID-19 detection and the hurdles encountered in this endeavor. The imperative for developing automated detection systems to mitigate virus transmission via contact is underscored. Notably, deep learning architectures such as ResNet, Inception and Googlenet have been deployed for COVID-19 detection, albeit with a focus on identifying pneumonia cases. Discriminating between COVID-19-induced pneumonia and pneumonia caused by other pathogens remains a formidable task, demanding innovative solutions for accurate and timely diagnosis.