Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : SEMINAR TEKNOLOGI MAJALENGKA (STIMA)

ANALISIS SISTEM REKOMENDASI MUSIK BERDASARKAN LIRIK DENGAN METODE TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY Muhyidin, Muhammad Sahel; Hariyanti, IFani; Novianto, Muhammad Fahmi; Apriliani, Anna Alifia; Rohmah, Sophia Nur
SEMINAR TEKNOLOGI MAJALENGKA (STIMA) Vol 8 (2024): STIMA 8.0 : Menuju Kesinambungan : Inovasi dan Adaptasi Teknologi untuk Pembangunan Be
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study develops and evaluates a music recommendation system using content-based filtering, focusing on lyrical analysis. Utilizing Term Frequency-Inverse Document Frequency (TF-IDF) and cosine similarity metrics, the system analyzes a dataset of 6,049 songs to identify thematically related music based on lyrical content. The methodology involves data preprocessing, feature extraction, and the application of a content-based filtering algorithm to compare song attributes. Results indicate the system's ability to generate relevant recommendations, potentially enhancing user experience in music discovery. This research contributes to the field of personalized content delivery systems, offering insights into the effectiveness of lyric-based music recommendation algorithms