Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pengenalan Pola Dasar Angka berdasarkan Gerakan Tangan menggunakan Machine Learning NOR, SYAFRIYADI; MUSLIM, MUHAMMAD AZIZ; ASWIN, MUHAMMAD
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 10, No 3: Published July 2022
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v10i3.595

Abstract

ABSTRAKPengenalan gerakan tangan dianggap sebagai bagian penting dari interaksi manusia komputer, memungkinkan komputer untuk mengenali dan menafsirkan gerakan tangan dan menjalankan perintah. Penggunaan machine learning dimanfaatkan untuk mencari tren dan pola yang berbeda. Namun, tantangan untuk menerapkan machine learning menjadi bagaimana memilih di antara berbagai model berbeda digunakan untuk kumpulan data atau kasus berbeda. Tujuan dari penelitian ini adalah mengukur kinerja model machine learning yang diusulkan dengan pemilihan hyperparameter yang sesuai dalam mengenali 10 pola angka berdasarkan gerakan tangan di udara. Dalam makalah ini, model KNN, SVM, dan ANN-PSO diusulkan. Eksperimen dilakukan dengan mengumpulkan data gerakan yang berasal dari MPU-6050. Kinerja metode yang diusulkan dievaluasi menggunakan metrik standar seperti akurasi klasifikasi, presisi, recall, f1-score, dan AUC-ROC. Hasilnya menunjukkan bahwa akurasi rata-rata mencapai 87%.Kata kunci: HCI, hand gesture recognition, machine learning, MPU-6050, pola ABSTRACTHand gesture recognition is considered an essential part of human-computer interaction (HCI), enabling computers to recognize and interpret hand gesturesand execute  commands. The use of machine learning is utilized to look for different trends and patterns. However, the challenge for implementing machine learning becomes how to choose between different models used for different datasets or cases. This research aims to measure the performance of the proposed machine learning model by selecting the appropriate hyperparameters in recognizing 10 number patterns based on hand gestures in the air. In this paper, KNN, SVM, and ANN-PSO models are proposed. Experiments were carried by collecting gesture data from MPU-6050. The performance of the proposed method was evaluated using standard metrics such as classification accuracy, precision, recall, f1-score, and AUC-ROC. The results show that the average accuracy reaches 87%.Keywords: HCI, hand gesture recognition, machine learning, MPU-6050, pattern 
Integration of the XY-MD02 Module in an IoT-Based Humidity and Temperature Monitoring System with Graphic Display on Nextion LCD Nor, Syafriyadi; Sarifudin, Sarifudin
JAREE (Journal on Advanced Research in Electrical Engineering) Vol 9, No 1 (2025): January
Publisher : Department of Electrical Engineering ITS and FORTEI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/jaree.v9i1.404

Abstract

Abstract—Temperature and humidity monitoring is crucial in various industrial sectors such as agriculture, manufacturing and health. Integrating the latest technology, such as IoT (Internet of Things), opens up new opportunities to increase the efficiency and accuracy of monitoring systems. This research focuses on integrating the XY-MD02 module into an IoT-based monitoring system to measure and monitor humidity and temperature levels accurately. The system uses the XY-MD02 module to collect data, which is transmitted wirelessly to the server using the MQTT protocol. The collected data is processed and displayed in real-time on the Nextion LCD, providing an intuitive graphical representation of environmental conditions. Integrating the XY-MD02 module and Nextion LCD in an IoT-based monitoring system demonstrates practical and reliable humidity and temperature measurements. The average value of the measured temperature is 31.58 with a standard deviation of 0.17, indicating high accuracy in temperature measurement with low variation. Meanwhile, for humidity, the average is 62.34, with a standard deviation of 1.01. The system's compatibility with the MQTT protocol ensures smooth communication and data exchange between devices. Integrating the XY-MD02 module in an IoT-based monitoring system has proven successful in providing accurate and real-time monitoring of humidity and temperature, offering an effective solution in environmental monitoring by keeping up with the latest technological developments. 
Integration of PM1200 and IoT for Electrical Energy Monitoring with Web-Based Map Visualization Nor, Syafriyadi; Ahyadi, Zaiyan
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 9 No. 1 (2025)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v9i1.1363

Abstract

This study aims to integrate the PM1200 device with Internet of Things (IoT) technology using the Modbus protocol to enable real-time monitoring of electrical energy. The current challenge lies in the limited flexibility of energy monitoring, which is typically restricted to local access and lacks map-based visualizations. To address this, the system integrates interactive maps to provide a clearer and more comprehensive view of energy distribution across different locations. This study seeks to offer an effective energy monitoring solution with data visualized through maps on an interactive web platform. The methodology includes reading data from the PM1200 device via the Modbus protocol, transmitting it to an IoT platform using the MQTT protocol, and displaying the data as maps on a web interface. The findings are expected to support effective energy monitoring and enhance energy management efficiency.