Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical, Computer, and Biomedical Engineering (IJECBE)

Blackout Recovery Scenario in a Combined-Cycle Power Plant via Line Charging and Internal Cross-Supply: A Techno-Economic Comparative Analysis Warih, Gamal Fiqih Handono; Jufri, Fauzan Hanif; Samual, Muhammad Gillfran; Hudaya, Chairul
International Journal of Electrical, Computer, and Biomedical Engineering Vol. 2 No. 2 (2024)
Publisher : Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62146/ijecbe.v2i2.61

Abstract

The readiness of fast response power plants, such as Combined-Cycle Power Plant (CCCP), following a blackout in the power system shall be maintained to preserve the availability of the supply. Hence, blackout recovery scenario is usually prepared and considered as one of the measures to achieve the system readiness after blackout. This study presents a techno-economic comparative analysis between two blackout recovery methods, namely via line charging and internal cross-supply, in CCCP Priok, Indonesia. It analyzes the historical data of the relationship of the active power contribution to the frequency, and then obtains the appropriate settings for the power plant parameters. From the technical perspective, the gain value or participation factor of this plant is 49 MW/Hz with 6% droop setting and 0.029 Hz of deadband frequency. It is found that a load set point lower than 2.49 MW can lead to grid synchronization failure since there are self-consumption loads on each gas turbine. Moreover, to prevent the risk of reverse power and to achieve a successful internal cross-supply scenario, the minimum load setting shall be adjusted to 3 MW. Meanwhile, from an economic perspective, the results show that a successful internal cross-supply method may save up to IDR 2.7 billion compared with line charging method.
Optimizing Charge and Discharge of Lithium-Ion Batteries by Deploying PID Controller with Coupled Electro-Thermal-Aging Dynamic Hudaya, Chairul; Akbar, Iwan Bahyudin; Verdianto, Ariono
International Journal of Electrical, Computer, and Biomedical Engineering Vol. 2 No. 3 (2024)
Publisher : Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62146/ijecbe.v2i3.76

Abstract

Lithium-ion batteries (LIBs) are extensively utilized in many applications, from power plant utilities to portable electronic devices. Nevertheless, the performance and longevity of the LIB are affected by the interconnected electro-thermal-aging (ETA) dynamics that occur during the repeated process of charging and discharging. This study presents a technique for managing the charging and discharging of LIBs by controlling the operational voltage, addressing this issue. The technique involves employing a proportional-integral-derivative (PID) controller, which involves interconnected ETA dynamics. The result of the suggested technique is confirmed by comparing experimental data obtained from a cylindrical 26650 lithium-iron phosphate (LFP). The PID controller optimizes the response time of charging and discharging through the voltage while affecting the lifetime of the cell. The results indicated that the implementation of the PID controller allows for a rapid and secure charging and discharging process for LIB, leading to improved cell health and a longer cell life expectancy by controlling a certain degree of parameter known as overshoot. This strategy has the potential to be implemented in the charging and discharging process that positively affects the LIBs performance.
Comparative Analysis of Breakdown Voltage, Temperature Rise, and Production Cost of Using Mineral Oil and Synthetic Ester in 33 MVA 132/33 kV Power Transformers Khusuma, AB Rendra; Indarto, Agus; Hudaya, Chairul; Setiabudy, Rudy; Husnayain, Faiz
International Journal of Electrical, Computer, and Biomedical Engineering Vol. 3 No. 2 (2025)
Publisher : Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62146/ijecbe.v3i2.139

Abstract

In support of achieving the net zero emission target in the power sector, the selection of environmentally friendly transformer insulating oil is very important. This study presents a comparative analysis of the dielectric and thermal performance between mineral oil and synthetic ester oil. The breakdown voltage (BDV) test was conducted with a variation of rest time of 1 minute and 10 minutes. In addition, temperature rise tests were conducted on a 33 MVA capacity power transformer with a voltage of 132/33 kV. Temperature rise testing is carried out on synthetic ester oil and mineral oil through thermal simulation with identical transformer specifications, the goal is that there are no distinguishing variables in the test. The test results show that at a rest time of 1 minute, synthetic ester oil produces fluctuating BDV values, with some data being below the minimum threshold of 60 kV according to IEC 61203 standards. In contrast, mineral oil (MO) showed stable and consistent dielectric performance. At a rest time of 10 minutes, both types of oil showed stable BDV values with low standard deviations. In terms of thermal performance, mineral oil produced a lower temperature rise than synthetic ester oil (SE), indicating better cooling efficiency. The study will also analyze the impact of transformer dimensions due to the different transformer oils used, which will result in the price of the transformer. The findings provide technical insights for manufacturers and users in selecting transformer oils that support environmental sustainability without compromising the reliability of power transformers.