Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Indonesian Journal of Statistics and Its Applications

STUDY ON EMD METHOD FOR PREDICTING THE PRICE OF CURLY RED CHILI IN INDONESIA Zilrahmi Zilrahmi; Hari Wijayanto; Farit M Afendi; Rizal Bakri
Indonesian Journal of Statistics and Applications Vol 4 No 2 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i2.600

Abstract

The fluctuations of curly red chili price affect the inflation rate in Indonesia. So that, the basic characteristics of price movement and correctly prediction for curly red chili price become concern in various studies. Empirical Mode Decomposition (EMD) method helps to examine behavioral characteristics of curly red chili prices in Indonesia easily. Ensemble EMD (EEMD) and modified EEMD are the decomposition method of time series which is development of EMD method. The decomposed data with EMD methods can also used for price forecast. The forecasting with ARIMA and trend polynomial performed to assess the effect of decomposition with EMD methods for forecast stability of curly red chili price in Indonesia under various conditions. The results show the most influence factor for price fluctuation of curly red chili in Indonesia is season and growing season. In this case, the ability of a decomposition method to produce the actual components that describe the pattern of data signals affect the accuracy of the predicted value obtained using the model. The predicted value using the decomposed data by modified EEMD always better than EEMD on the overall condition.
Implementation of Fuzzy C-Means Algorithm for Clustering Provinces in Indonesia Based on Micro and Small Industry Ratio in Village Areas Frandito Rahmanesta; Zamahsary Martha; Dodi Vionanda; Zilrahmi Zilrahmi
Indonesian Journal of Statistics and Applications Vol 8 No 2 (2024)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v8i2p178-190

Abstract

Post-economic crisis, the micro and small industries contribute the most labor compared to other industries. Regional development sourced from small micro industries is a strategic force in developing a country because the development of small micro industries leads to realizing equitable welfare to reduce income inequality. Development in village areas is an important factor for regional development, reducing inequality between regions, and alleviating poverty. However, based on the 2018 PODES survey, there are regional imbalances in Indonesia in the small micro industry which is centralized on Java Island. Therefore, clustering and characteristics of the province were carried out based on the PODES survey of the small micro industry sector. This research uses the Fuzzy C-Means algorithm to cluster 34 provinces in Indonesia based on the ratio of small micro industries in village areas in 2021, to see how the development of small micro industries in village areas in each province in Indonesia. Fuzzy C-Means is one of the data clustering techniques that uses a fuzzy clustering model, where cluster formation is based on a membership degree value that varies between 0 and 1. The Fuzzy C-Means algorithm generates 4 clusters, cluster 1 and 2 represents provinces with high and very high micro and small industry development in village areas and cluster 3 and 4 represents provinces with medium and low micro and small industry development in village areas. The Fuzzy C-Means algorithm produces a good cluster structure with a silhouette coefficient value of 0,6406.
Comparison of The Singular Spectrum Analysis and SARIMA for Forecasting Rainfall in Padang Panjang City Putri, Fadhira Vitasha; Fitri, Fadhilah; Kurniawati, Yenni; Zilrahmi, Zilrahmi
Indonesian Journal of Statistics and Applications Vol 9 No 1 (2025)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v9i1p61-74

Abstract

Indonesia is an area with a tropical climate, so it has two seasons, namely the rainy season and the dry season. The rainy season lasts from November to March and during this period rainfall tends to be high in several areas. Padang Panjang City is one of the cities with the smallest area in West Sumatra Province, which has the nickname Rain City. This is because the city of Padang Panjang has cool air with a maximum air temperature of 26.1 °C and a minimum of 21.8 °C, so this city has a fairly high level of rainfall with an average of 300 to 400 mm/year. This article discusses rainfall forecasting for Padang Panjang City by comparing the Singular Spectrum Analysis and Seasonal Autoregressive Integrated Moving Average methods. The data used spans 8 years, from January 2016 to December 2023. Forecasting results are obtained from the best method selected based on the smallest Mean Absolute Percentage Error value. The Singular Spectrum Analysis method has a Mean Absolute Percentage Error value of 5.59% and Singular Spectrum Analysis and Seasonal Autoregressive Integrated Moving Average  has a value 7.43%. The best forecasting method is obtained by the Singular Spectrum Analysis method.
Application of Singular Spectrum Analysis in Predicting Rupiah Exchange Yuan Hendrawan, Muhammad; Zilrahmi, Zilrahmi; Kurniawati, Yenni; Fitria, Dina
Indonesian Journal of Statistics and Applications Vol 9 No 1 (2025)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v9i1p75-85

Abstract

The exchange rate between two countries is the price of the currency used by residents of these countries to trade with each other, the relationship between the Rupiah exchange rate and the Yuan is one of the important aspects in the dynamics of international trade. Therefore, forecasting the exchange rate is important as an effort to predict the exchange rate of Rupiah against Yuan in the future. The method used for forecasting is Singular Spectrum Analysis, namely decomposition and reconstruction. The accuracy of the resulting forecast is measured using the Mean Absolute Percentage Error criterion. The exploration results obtained are forecasting accuracy based on the Mean Absolute Percentage Error value of 2.15% with a window length of 23 which identifies that the forecasting results are accurate and effective. Forecasting is said to be accurate if the Mean Absolute Percentage Error value is lower than 10% and close to 10%