Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Physical Review

INTERNET OF MEDICAL THINGS (IoMT)-BASED HEART RATE AND BODY TEMPERATURE MONITORING SYSTEM Laila, Ida; Arifin, A; Armynah, Bidayatul
Indonesian Physical Review Vol. 5 No. 1 (2022)
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/ipr.v5i1.134

Abstract

Research has been carried out on a heart rate and body temperature monitoring system based on the Internet of Medical Things (IoMT). This study aims to create a system for monitoring heart rate and body temperature remotely in real-time with measurement results displayed on a web server. This research includes several methods such as developing research concepts based on literature studies, system design consisting of hardware and software design, sensor calibration, web server creation, system testing, and direct data retrieval. The hardware manufacturing stage uses several components such as a pulse heart sensor to detect heart rate, DS18B20 sensor to detect body temperature, Arduino Uno microcontroller, Xbee end device, Xbee coordinator, and raspberry pi as a server computer. Then for the use of software on this system, it consists of Arduino Integrated Development Environment (IDE) to run Arduino Uno hardware, XCTU to provide configuration on Xbee, Python to run Raspberry Pi and Django as a framework for building web servers and MySQL as data storage center measurement results. Heart rate monitoring is done by placing a sensor on one of the fingers, and body temperature is done by placing the sensor in the axilla. The output from the sensor in the form of analog data is converted by the Arduino Uno microcontroller into digital data and then sent to the Raspberry Pi module via Xbee. The raspberry pi has processed data is then stored in the database and then displayed on the webserver. The sensor calibration results show that the pulse heart sensor's error rate is 0.41%, and the DS18B20 temperature sensor is 1.09%. After calibration of the sensor, data was collected on the three respondents' heart rate and body temperature. The measurement results show that the system can store each respondent's heart rate and body temperature data in the database and display the measurement results on the webserver in real-time. Based on these results indicate that the system that has been made can work well.
PHOTOINACTIVATION OF CANDIDA ALBICANS BIOFILM WITH GREEN LASER MEDIATED BY THE PAPAYA LEAF EXTRACT CHLOROPHYLL Abdullah, Rismayani; Astuty, Sri Dewi; Armynah, Bidayatul; Tabaika, Pryandi M; Imelda, Imelda
Indonesian Physical Review Vol. 8 No. 1 (2025)
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/ipr.v8i1.367

Abstract

This study aims to activate the effectiveness of Photodynamic Inactivation (PDI) as an antibacterial agent by using a green laser and papaya leaf chlorophyll extract to prevent Candida albicans cell death. Papaya leaf extract chlorophyll is known to have potential as a photosensitizer (PS) through its antimicrobial properties and ability to absorb optimal light photons at a wavelength range of 405–680 nm. Activation of chlorophyll molecules with appropriate light produces Reactive Oxygen Species (ROS), which are toxic to pathogenic microbes such as Candida albicans. The research method involves using PDI with a green laser light source and chlorophyll extract on Candida albicans biofilms. Four main treatment groups were applied, negative control (C-), positive controls with 10% (C1+) and 15% chlorophyll (C2+), irradiation for 60, 120, 180, 240, and 300 seconds (L1–L5), and combinations of irradiation with chlorophyll (L1F1–L5F2, where F1 for 10% chlorophyll and F2 for 15% chlorophyll), with measurements performed three times for each treatment. Living Candida albicans cells were detected using the XTT assay staining method. The results showed a significant decrease in activity in all treatment groups. Maximum activity was achieved in the L5F1 and L5F2 treatment groups with inactivation of 80% (p<0.05) and 83% (p<0.05), respectively. This study concludes that high papaya leaf extract chlorophyll concentrations combined with a green laser effectively inhibit Candida albicans biofilm.