Sodium ion battery is one of the promising alternatives to lithium ion battery. Sodium manganese oxide as the sodium ion battery catode material has been synthesized by modifying the sol-gel method used to obtain lithium manganese oxide. The precursors used were table salt and manganese chloride. The sol-gel process used was water solvent, citric acid as a chelating agent and chitosan as the template. Thermal decomposition and formation zone obtained from simple thermal analysis using furnace and digital scales. Calcination was carried out at 600°C and 850°C for 2 hours. Crystal properties and morphology were analyzed using XRD and SEM. Based on the analysis of XRD pattern, sodium manganese oxide crystals (Na0.7MnO2.05 JCPDS 27-0751) have been formed at both of the calcination temperature. Observed morphology of the sample showed the domination Mn3O4 JCPDS 18-0803 in accordance with crystalline phase identification. These results demonstrate that the modified sol-gel method could be used to obtain sodium manganese oxide as sodium ion battery cathode material.