Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Computational and Experimental Research in Materials and Renewable Energy (CERiMRE)

Interaction Between Liquid Lead and FeNi Material Using Molecular Dynamics Simulation Ramadhany, Feryna; Misto, Misto; Mulyono, Tri; Hasan, Moh.
Computational And Experimental Research In Materials And Renewable Energy Vol 5 No 1 (2022): May
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v5i1.31477

Abstract

The liquid lead corrosion is often described as a damage of the metal surface due to the high solubility of atoms of the metal that flowing into the liquid metal medium through the diffusion process. This research was conducted to examine the performance of FeNi alloys in liquid lead at various compositions, especially the metal structure conditions due to interactions between metal atoms at high temperatures. To see the performance of this FeNi alloy steel, the parameter that you want to know is the diffusion coefficient of its constituent elements. The potential used is the Lennard-Jones potential. This research uses the LAMMPS molecular dynamics simulation software. From the simulation works can be concluded that the lowest diffusion coefficient of Fe in liquid lead which produces the strongest structure is at the composition (concentration) 65% Fe and 35% Ni with related diffusion coefficient of 5.8582 x 10-12 m2/s, where at this value the corrosion of FeNi in Liquid lead can already be reduced till 77.32%.Keywords: Liquid lead corrosion, Molecular dynamics, FeNi Alloy, Composition, LAMMPS.
Lift Force of Airfoil (NACA 0012, NACA 4612, NACA 6612) With Variation of Angle of Attack and Camber: Computational Fluid Dynamics Study Ardany, Mariza D.; Pandiangan, Paken; Hasan, Moh.
Computational And Experimental Research In Materials And Renewable Energy Vol 4 No 2 (2021): November
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v4i2.28372

Abstract

Airfoil is a cross section from air plane wings can affect aerodynamic performance to lift force (FL). The lift force generated by airfoil has different values due to several external and internal factors, including angle of attack, flow rate and camber. To find the lift force of airfoils with different cambers and variations angle of attack and then flow rate can use computational fluid dynamics simulation. Computational fluid dynamics is simulation on a computer that can complete systems for fluid, heat transfer and other physical processes. This research using computational fluid dynamics simulation performed by SolidWorks, with NACA airfoil type which has different camber NACA 0012, NACA 4612 and NACA 6612. The angle of attack used in research was 0o, 4o, 8o, 12o, 16o and 20o. Flow rate used in research was 20m/s, 40 m/s, 60 m/s, 80 m/s and 100 m/s. From this research will be the bigger camber can produce a greater force lift. In addition, the greater airfoil flow rate can produce a greater force lift. This research also that the connection between force lift with coefficient lift (CL) is nonlinear quadratic form.