Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Statistics and Its Applications

CONSTRUCTING EARTHQUAKE DISASTER-EXPOSURE LIKELIHOOD INDEX USING SHAPLEY-VALUE REGRESSION APPROACH Rahma Anisa; Bagus Sartono; Pika Silvianti; Aam Alamudi; Indonesian Journal of Statistics and Its Applications IJSA
Indonesian Journal of Statistics and Applications Vol 3 No 1 (2019)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v3i1.198

Abstract

Indonesia is very prone to earthquake disaster because it is located in the Pacific ring of fire. Therefore, a reference level of earthquake disaster exposure likelihood events in Indonesia is needed in order to increase people's awareness about the risks. This study aims to determine the index that describes the risk of possible future earthquake disaster. As initial research, this study is focus on earthquake disasters in Java region, as it has the largest population in Indonesia. Several indicators that are related to the severity of earthquake disaster impact, were used in this study. The weights of each indicators were determined by considering its shapley-value, thus all indicators gave equal contribution to the proposed index. The results showed that shapley-value approach can be utilized to construct index with equal contribution of each indicators. In general, the resulted index had similar pattern with the number of damaged houses in each districts.
Missing Value Estimation Using Fuzzy C-Means in Classification of Chronic Kidney Disease: Pendugaan Missing Values Menggunakan Fuzzy C - Means Pada Pengklasifikasian Penyakit Ginjal Kronik Eria, Raisa Nida; Alamudi, Aam; Sulvianti, Itasia Dina; Silvianti, Pika; Rahardiantoro, Septian
Indonesian Journal of Statistics and Applications Vol 9 No 1 (2025)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v9i1p21-32

Abstract

Based on World Health Organization (WHO) the cases of death due to Chronic Kidney Disease (CKD) ranked the 10th worldwide in 2020. CKD need to be done prevent early. History data to identify individuals predisposed to CKD in this research. In this research data contains missing values, therefore using Fuzzy C - Means (FCM) method to address it. The percentage of error in clustering CKD using FCM method is 20,25% and balanced accuracy of 84,80%. The result from classification using Classification and Regression Trees (CART) shows that accuracy value of 97,50%; sensitivity of 100,00%; and specificity of 92,86%. Individual suffer from CKD if having (1) hemoglobin more than or equal 13; spesific gravity 1,020 or 1,025; serum creatinine less than 1,3; albumin 1 or 2 or 3 or 4 or 5; and sugar 0 or 2 or 3 or 4 or 5, (2) hemoglobin more than or equal 13; spesific gravity 1,020 or 1,025; and serum creatinine more than or equal 1,3, (3) hemoglobin more than or equal 13 and spesific gravity 1,005 or 1,010 or 1,015, (4) hemoglobin less than 13 and red blood cell count less than 5,5.