Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Experimental and Applied Physics

Effect of Variations in Mass Composition of TiO2/Activated Carbon Cassava Peel on Crystal Structure and Size Fauziyah, Faadhilah; Darvina, Yenni; Ratnawulan, Ratnawulan; Gusnedi, Gusnedi
Journal of Experimental and Applied Physics Vol 2 No 1 (2024): March Edition
Publisher : Department of Physics, Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jeap.v2i1.45

Abstract

A battery is a tool used to store electrical energy to obtain electricity so that it can be used to power remotes, cellphones, laptops, cameras and other electronic items. The working indicator of a battery is capacity, its electrochemical cycling capability depends on the anode material. In general, battery anodes are made using graphite. However, graphite has limitations, namely that it can easily cause short circuits. Because graphite has limitations, a replacement for graphite from TiO2 nanocomposites with activated carbon will be made. Nanocomposites are new materials that are formed by combining two or more compounds to produce new properties and have nanoscale dimensions. TiO2 is used because it can reduce short cycles, has good stability, high current density and can increase battery performance capacity. Activated carbon is used to expand the surface of the material to obtain a large capacitance. The activated carbon used in this article is cassava peel from unused waste in order to reduce environmental pollution and increase the economic value of the waste. The aim of this research is to produce TiO2/Activated Carbon nanocomposites to test their crystal structure and size using XRD. TiO2/Activated carbon nanocomposites were obtained using the sol-gel method. Variations in the mass composition of TiO2/Activated Carbon used are 40%:60%, 50%;50%, and 60%:40%. Based on the tests that have been carried out, the smallest crystal size was obtained with a variation of 40%:60%, namely 58.4 nm with a Tetragonal structure for TiO2 while Cubic and Rhombohedral for carbon.
Effect of The Camposition Nanocomposite Fe3O4-Graphene Oxide on Optical Properties Synthesized from Coconut Shell Charcoal Angraini, Sri; Gusnedi, Gusnedi; Jonuarti, Riri; Jhora, Fadhila Ulfa
Journal of Experimental and Applied Physics Vol 2 No 2 (2024): June Edition
Publisher : Department of Physics, Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jeap.v2i2.60

Abstract

This study aims to determine the effect of Fe3O4 nanocomposite composition: Graphene Oxide on the optical properties of Fe3O4 Graphene Oxide nanocomposite by obtaining the results of absorbance value, transmittance, reflectance, and band gap value based on UV-Vis test. Graphene oxide used in this study is made from biomass waste coconut shell charcoal which contains carbon elements, most of whose pores are still covered by hydrocarbons and other organic compounds and the charcoal is used as activated carbon through an activation process, then synthesized using the modified hummers method. In this study, three variations were used, namely 20%: 80%; 30%; 70%; 40%: The results show that the effect of Fe3O4-Graphene Oxide Nanocomposite Composition on coconut shell waste using a UV-Vis spectrometer, the absorbance value of each sample was obtained in the range of 200-290 nm.. In the results of gap energy research with 3 variations respectively 3.269 eV, 3.79 eV, 3.91 eV obtained that if the variation of graphene oxide is higher than the value of the energy gap produced is smaller, so the addition of graphene oxide from coconut shell waste has the effect of reducing the energy gap of graphene oxide.
Effect of Calcination Temperature of SiO2-TiO2 Composite XRD Characterization of Crystal Size Structure and Phase Putri, Sri Fany Mulya; Ratnawulan, Ratnawulan; Gusnedi, Gusnedi; Jonuarti, Riri
Journal of Experimental and Applied Physics Vol 2 No 3 (2024): September Edition
Publisher : Department of Physics, Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/jeap.v2i3.65

Abstract

Calcination is often used to activate beneficial metal oxidation in catalysts and improve material stability. In the metal oxidation research used is SiO2-TiO2 nanocomposite because it has advantages over photocatalysts and thermal stability. One important factor that affects is the particle size and crystal phase formed during the calcination process at various temperatures. The purpose of the study was to determine the effect of calcination on changes in phase and crystal structure in SiO2-TiO2 nanocomposites. The material used for the manufacture of nanocomposites is natural silica source from coconut fiber which is burned into white ash. The ash was extracted for the preparation of silica sol by adding Tetraethyl Orthosilicate (TEOS) as a precursor synthesized by the sol gel method then, calcination was carried out with temperature variations of 700 , 800 , and 900 . After calcination, XRD characterization was carried out to obtain crystal sizes of 63.48 nm, 66.87 nm, and 73.83 nm. The phase formed is dominant in TiO2 is rutile and SiO2 is quartz and cristobalite.