Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Faraday: Journal of Fundamental Physics, Research, and Applied Science

Comparison of Stress and Deformation Distribution in Steel and Cobalt Chromium Materials for Femoral Bone Implants using Computational Biomechanics Analysis hardiantati, hamizatul; Wulan, Widya Rachma; Timur, Fajar; Hasan, Nailul; Fauziyah, Nur Aini
Faraday: Journal of Fundamental Physics, Research, and Applied Science Vol. 1 No. 1 (2025): Faraday: Journal of Fundamental Physics, Research, and Applied Science
Publisher : Universitas Pembangunan Nasional "Veteran" Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33005/faraday.v1i1.3

Abstract

This study analyzes the mechanical performance of femoral bone implants using two types of materials, namely Alloys and Cobalt Chromium Alloys, as well as two variations in implant length (72 mm and 24 mm, and 80 mm and 20 mm). Simulation was conducted using the Finite Element Method (FEM) to evaluate mechanical parameters, such as directional deformation, equivalent stress, maximum principal stress, and minimum principal elastic strain. The analysis results show that the Cobalt Chromium Alloys material has smaller deformation compared to the Alloys, indicating better stiffness and load-bearing capacity. However, the maximum principal stress value is higher in Cobalt Chromium Alloys, indicating a greater risk of stress concentration. Meanwhile, a longer implant length shows a more even stress distribution compared to a shorter length. This study provides important insights into the influence of material and implant length on its mechanical performance, and can serve as a basis for designing optimal implants for specific medical needs
Review: Characterization of Optical and Structural Properties of Carbon Nanodots (CNDs) from Biomass Waste by Microwave Method Putriana, Ima; Aruan, Nenni Mona; Riskiarna, Reffany Choiru; Fauziyah, Nur Aini; Santika, Arum Sinda
Faraday: Journal of Fundamental Physics, Research, and Applied Science Vol. 1 No. 2 (2025): Faraday: Journal of Fundamental Physics, Research, and Applied Science
Publisher : Universitas Pembangunan Nasional "Veteran" Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This review focuses on examining the synthesis and characterization of Carbon Nanodots (CNDs) from the utilization of Tandan Kosong Kelapa Sawit (TKKS) using the microwave method as an environmentally friendly approach. The resulting CNDs were characterized for their optical and structural properties to evaluate their potential application in the field of biosensors. The synthesis process involves carbonizing TKKS at 500℃ for 3 hours, followed by activation using a microwave at 450 Watts for 15 minutes. UV-Vis characterization shows an absorption peak at 280 nm, which indicates n-π* (C=O) and π-π* (C=C). Meanwhile, FTIR characterization aims to determine the presence of the carbonyl C=O functional group at 1990,98 cm-1 and the aromatic C=C bond at 1416,2 cm-1. The CNDs from TKKS exhibit photoluminescent properties and surface functional groupss that enhance adsorption performance and chemical reactivity. This research offers an efficient and sustainable method for synthesizing CNDs, while also being a breakthrough in utilizing biomass wate, particularly TKKS. The findings have the potential for developing carbon materials in environmental and energi applications.