Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Techno Nusa Mandiri : Journal of Computing and Information Technology

OPTIMIZED FACEBOOK PROPHET FOR MPOX FORECASTING: ENHANCING PREDICTIVE ACCURACY WITH HYPERPARAMETER TUNING Alamsyah, Nur; Restreva Danestiara, Venia; Budiman, Budiman; Nursyanti, Reni; Setiana, Elia; Hendra, Acep
Jurnal Techno Nusa Mandiri Vol. 22 No. 1 (2025): Techno Nusa Mandiri : Journal of Computing and Information Technology Period o
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/techno.v22i1.6507

Abstract

MPOX (Monkeypox) has become a significant global health concern, requiring accurate forecasting for effective outbreak management. This study improves MPOX case prediction using Facebook Prophet with hyperparameter optimization. The dataset consists of global MPOX case records collected over time. Data preprocessing includes missing value imputation, normalization, and aggregation. Facebook Prophet is applied to forecast case trends, with model performance evaluated using Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). A baseline Prophet model is first trained using default parameters. The model is then optimized by fine-tuning seasonality mode, changepoint prior scale, and growth model. The results show that hyperparameter tuning significantly enhances forecasting accuracy. The optimized model reduces MSE from 541,844.77 to 320,953.34 and RMSE from 736.10 to 566.53, demonstrating improved precision. The model also captures trend shifts and seasonal fluctuations more effectively. In conclusion, this study confirms that tuning Facebook Prophet improves epidemic forecasting, making it a reliable tool for MPOX monitoring. Future research should integrate external factors, such as vaccination rates and mobility data, to further refine predictions.