Celvine Adi Putra
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI

Penggunaan Fitur Saliency-SURF untuk Klasifikasi Citra Sel Darah Putih dengan Metode SVM Siska Devella; Yohannes Yohannes; Celvine Adi Putra
JATISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol 8 No 4 (2021): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM) STMIK Global Informatika MDP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v8i4.1547

Abstract

Sel darah putih merupakan sel pembentuk komponen darah yang berfungsi melawan berbagai penyakit dari dalam tubuh (sistem kekebalan tubuh). Sel darah putih dibagi menjadi lima jenis, yaitu basofil, eosinofil, neutrofil, limfosit, dan monosit. Pendeteksian jenis sel darah putih dilakukan di laboratorium yang memerlukan seorang spesialis serta usaha yang lebih, waktu, dan biaya. Solusi yang dapat dilakukan salah satunya adalah menggunakan machine learning seperti support vector machine (SVM) dengan ekstraksi fitur SURF. Penelitian ini menggunakan dataset citra sel darah putih yang sebelumnya dilakukan tahap pre-processing yang, terdiri dari crop, resize, dan saliency. Metode saliency mampu memberikan bagian yang bermakna pada sebuah citra. Metode ekstraksi fitur SURF mampu memberikan keypoint yang dapat digunakan SVM dalam mengenali jenis sel darah putih. Penggunaan region-contrast saliency dengan kernel radial basis function (RBF) mendapatkan hasil akurasi, presisi, dan recall yang baik di bandingkan dengan penggunaan kernel lain dalam penelitian ini. Berdasarkan hasil pengujian yang didapat pada penelitian ini, saliency dapat meningkatkan hasil akurasi, presisi, dan recall dari SVM untuk dataset citra sel darah putih dibandingkan dengan tanpa saliency.