Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Information System, Applied, Management, Accounting and Research

Metode Ecomonic Value Added (Eva) Dalam Mengukur Kinerja Keuangan Untuk Menambah Hasil Ekonomis Perusahaan Aneu Kuraesin RS; Neni Shintia Bukit
JISAMAR (Journal of Information System, Applied, Management, Accounting and Research) Vol 7 No 1 (2023): JISAMAR : February 2023
Publisher : Sekolah Tinggi Manajemen Informatika dan Komputer Jayakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52362/jisamar.v7i1.963

Abstract

Pada umumnya penilaian kinerja keuangan bertujuan untuk melihat prospek dan risiko perusahaan. Dalam penelitian ini kinerja keuangan beberapa perusahaan Real Estate dan Properti yang dijadikan sampel diukur dengan Economic Value Added (EVA). Penggunaan data sekunder dalam penelitian ini bersumber dari laporan keuangan konsolidasi tahun 2020 sampai dengan tahun 2021. Dari hasil penelitian menunjukkan AMAN, ATAP dan BCIP tahun 2020-2021 menghasilkan EVA positif, sedangkan BBSS, BAPI dan BAPA tahun 2020-2021 menghasilkan EVA negatif tetapi untuk ATAP, ASRI DAN APLN tahun 2020 dan 2021 menghasilkan EVA negatif dan positif. Hal ini menunjukkan kondisi sektor properti dan real estate yang fluktuatif. Pada tahun 2020 dan 2021 nilai CC atau arus kas yang dibutuhkan untuk menggantikan risiko bisnis pada investor lebih besar dari nilai NOPAT yang diperoleh pada tahun 2021.
Model Prediksi Harga Saham BJBR Menggunakan Long Short-Term Memory (LSTM) untuk Mendukung Keputusan Investasi Susanti, Sussy; Kuraesin, Aneu
Journal of Information System, Applied, Management, Accounting and Research Vol 9 No 3 (2025): JISAMAR (Journal of Information System, Applied, Management, Accounting and Resea
Publisher : Sekolah Tinggi Manajemen Informatika dan Komputer Jayakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52362/jisamar.v9i3.2047

Abstract

Stocks are one of the most popular investment instruments among the public due to their potential for long-term returns through price appreciation and dividend distributions; however, stock price movements are heavily influenced by various factors such as macroeconomic conditions, market sentiment, and corporate actions, making accurate forecasting essential for investors to minimize risk and maximize profit. PT Bank BJB Tbk (ticker code: BJBR), a major bank in Indonesia that operates both conventional and Sharia-based services, has shown high volatility over the past few. Therefore, this research aims to develop a stock price prediction model for BJBR using the Long Short-Term Memory (LSTM) approach, a variant of Recurrent Neural Networks (RNN) well-suited for time series data. Historical closing price data from January 2020 to June 2025 were collected, preprocessed through normalization, dataset division, and transformation into supervised learning format, and then used to train an LSTM model with a two-layer architecture and dropout layers to prevent overfitting. The model was trained using the Adam optimizer and evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R²). Evaluation results showed that the model achieved a high level of accuracy, with an R² value of 0.9643 on the test data, while visualizations of predicted versus actual prices demonstrated a strong alignment, proving that the LSTM model is effective in capturing temporal patterns in financial time series data and can serve as a valuable tool for data-driven investment decision-making.