p-Index From 2020 - 2025
7.566
P-Index
Claim Missing Document
Check
Articles

Found 7 Documents
Search
Journal : Jurnal Teknik ITS

Rancang Bangun Aplikasi Pengelompokan dan Pemberi Rekomendasi Berita Lomba Online Menggunakan Klasifikasi Fuzzy Berbasis Kerangka Kerja Spring Febri Fernanda; Umi Laili Yuhana; Diana Purwitasari
Jurnal Teknik ITS Vol 2, No 1 (2013)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (540.295 KB) | DOI: 10.12962/j23373539.v2i1.2736

Abstract

Salah satu berita yang beredar dan banyak dibutuhkan adalah berita lomba. Pada umumnya, untuk mendapatkan berita lomba, setiap orang akan melakukan pencarian pada mesin pencari. Namun, pengguna masih harus tetap membuka halaman dan melakukan pencariannya pada masing-masing portal. Dikarenakan setiap portal mempunyai data berita lomba yang berbeda-beda, maka waktu yang diperlukan untuk mendapatkan berita lomba yang sesuai kurang efektif. Pada penelitian ini dikembangkan suatu sistem berbasis web yang secara berkala mampu memperbarui dan mengelompokkan kategori data berita lomba dari beberapa portal lomba. Pengambilan judul dan rangkuman data lomba memanfaatkan layanan Really Simple Syndication (RSS) sedangkan untuk mendapatkan konten data lomba memanfaatkan teknologi web crawler. Sistem berupa sebuah mesin pencari berita lomba dengan beberapa fungsi penyaringan. Dengan tambahan fitur pemberi rekomendasi berita berdasarkan profil pengguna dan sejarah pencarian, maka sistem ini dapat memudahkan pengguna mendapatkan berita lomba yang diinginkan secara cepat. Sistem dibangun menggunakan kerangka kerja Spring MVC agar memudahkan dalam pembangunan dan penggunaan ulang. Pengelompokan data berita lomba menggunakan metode Fuzzy Similarity K Nearest Neighbors (FSKNN) yang mampu mengelompokkan berita lomba ke dalam beberapa kategori sekaligus. Untuk membangun fitur mesin pencari dan pemberi rekomendasi berita lomba sistem memanfaatkan pustaka Lucene.
Modul Klasifikasi Aduan dengan Pendekatan Kemiripan Teks pada Aplikasi Perangkat Bergerak Suara Warga (SURGA) Kota Kediri Tegar Rachman Muzzammil; Raden Venantius Hari Ginardi; Diana Purwitasari
Jurnal Teknik ITS Vol 5, No 1 (2016)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (315.808 KB) | DOI: 10.12962/j23373539.v5i1.14807

Abstract

Kota Kediri yang memiliki sistem layanan pengaduan masyarakat yang bernama Suara Warga (SURGA) Kota Kediri. Dalam penerimaan aduan, terkadang aduan yang masuk ke dalam sistem memiliki kemiripan dengan aduan yang sudah ada. Hal ini dikarenakan adanya kemungkinan pengadu mengirimkan aduan berulang kali atau beberapa pengadu mengirimkan aduan dengan isi yang sama.Manhattan similarity adalah algoritma yang digunakan untuk mendeteksi kemiripan dua dokumen. Manhattan similarity dapat diimplementasikan pada aduan yang masuk ke dalam sistem. Aduan yang masuk diproses dengan pendekatan text similarity, yaitu text processing dan dimodelkan dalam bentuk vector space model sehingga dapat dihitung jarak antar aduan menggunakan Manhattan distance.  Perhitungan jarak antar aduan dibatasi dengan penyusunan cluster menggunakan K-Means clustering, sehingga hanya aduan yang berada pada cluster atau klasifikasi yang sama yang dibandingkan. Setelah klasifikasi dan deteksi dilakukan, sejumlah aduan diambil dari setiap cluster dan ditanyakan kepada 15 responden. Hasil uji coba menunjukkan bahwa aduan dapat dideteksi kemiripannya dengan jarak Manhattan distance minimal 0,9993 antar aduan dengan tingkat akurasi untuk aduan tidak mirip 100% dan untuk aduan mirip 90%. Waktu total yang dibutuhkan untuk melakukan proses klasifikasi dan deteksi kemiripan teks adalah 17 menit 27 detik dengan jumlah aduan 387.
Implementasi Artificial Bee Colony untuk Pemilihan Titik Pusat pada Algoritma K-Means Ario Bagus Nugroho; Diana Purwitasari; Chastine Fatichah
Jurnal Teknik ITS Vol 5, No 2 (2016)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (487.812 KB) | DOI: 10.12962/j23373539.v5i2.19645

Abstract

Klastering merupakan metode yang digunakan untuk membagi data menjadi beberapa kelompok bagian. K-means (KM) merupakan algoritma yang sering digunakan dalam klastering, hanya saja hasil dari KM sering kali terjebak di lokal optima. Artificial Bee Colony (ABC) merupakan algoritma yang bekerja berdasarkan cara lebah mencari makan, ABC terkenal mampu lolos dari jebakan lokal optima dengan mengenali mana hasil yang terbaik dari serangkaian hasil optimal. Menggabungkan ABCKM dimulai dengan memilih sumber makanan awal secara acak dan menggunakan KM untuk menyelesaikan semua permasalahan klastering pada setiap langkah ABC berikutnya serta menyimpan sumber makanan terbaik disetiap iterasinya. Sumber-sumber terbaik tersebut akan dipilih sumber makanan terbaiknya berdasarkan probabilitas kecocokannya masing-masing. Hasil dari implementasi algoritma ABCKM ini adalah data yang telah dibagi berdasarkan sumber terbaik. Setelah di evaluasi menggunakan algoritma silhouette dapat dibuktikan bahwa rata-rata nilai koefisien pada 5 buah dataset adalah 0.65 yang berarti data telah di-klaster dengan baik.
Strategi Pemilihan Kalimat pada Peringkasan Multi Dokumen Satrio Verdianto; Agus Zainal Arifin; Diana Purwitasari
Jurnal Teknik ITS Vol 5, No 2 (2016)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (400.223 KB) | DOI: 10.12962/j23373539.v5i2.20283

Abstract

Ringkasan berita diartikan sebagai teks yang dihasilkan dari satu atau lebih kalimat yang menyampaikan informasi penting dari berita. Salah satu fase penting dalam peringkasan adalah pembobotan kalimat (sentence scoring). Dimana pada peringkasan berita, metode pembobotannya sebagian besar menggunakan fitur dari berita sendiri. Berdasarkan hasil dari penelitian [3] bahwa untuk pembobotan kalimat pada dokumen yang memiliki karakter teks pendek dan terstruktur seperti berita maka teknik pembobotan kalimat terbaik adalah dengan menggunakan kombinasi dari keempat fitur yaitu word frequency, TF-IDF, posisi kalimat, dan kemiripan kalimat terhadap judul (Resemblance to the title ). Pada penelitian ini kombinasi keempat fitur tersebut dibandingkan dengan kombinasi tiga fitur dan dua fitur dan dievaluasi menggunakan nilai ROUGE-N dan dievaluasi berdasarkan lama waktu eksekusi. Berdasarkan hasil uji coba didapatkan hasil bahwa yang paling optimal diantara keempat kombinasi fitur tersebut adalah kombinasi antara dua buah fitur yakni fitur posisi kalimat dan word frequency dengan nilai ROUGE-N sebesar 0.679 dan lama waktu eksekusi 28.458 detik.
Deteksi Gempa Berdasarkan Data Twitter Menggunakan Decision Tree, Random Forest, dan SVM Rendra Dwi Lingga P.; Chastine Fatichah; Diana Purwitasari
Jurnal Teknik ITS Vol 6, No 1 (2017)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (98.486 KB) | DOI: 10.12962/j23373539.v6i1.22037

Abstract

Twitter merupakan salah satu media sosial yang cukup populer saat ini. Pengguna aktif Twitter mencapai kurang lebih 400 juta orang. Fitur utama yang paling penting dari Twitter yaitu layanan yang bersifat real-time dimana pengguna dapat menuliskan catatan singkat tentang apa yang terjadi secara langsung. Sebagai contoh, ketika terjadi bencana alam(gempa bumi) di suatu tempat, banyak pengguna aktif twitter menulis informasi berupa (tweet) tentang gempa bumi yang sedang berlangsung melalui Twitter. Hal ini memungkinkan dibuatnya sebuah metode yang mendeteksi terjadinya gempa atau tidak dengan melakukan observasi melalui tweet yang ada. Dalam tugas akhir ini dibuat sebuah metode klasifikasi untuk membedakan antara tweet yang mengandung informasi gempa  yang sesungguhnya (gempa positif) dan tweet yang mengandung informasi gempa namun memiliki arti lain (gempa negatif). Setelah dilakukan klasifikasi menggunakan Decision Tree, Random Forest dan Support Vector Machine (SVM). Hasil yang didapat memberikan nilai akurasi Support Vector Machine (SVM) secara keseluruhan lebih baik daripada Decision Tree dan Random Forest dengan persentase gempa yang dideteksi oleh sistem (Recall) didapatkan nilai 86.3%.dengan precision sebesar 88.7%. Namun jika dilihat dari terdeteksinya gempa oleh sistem tanpa dirata-rata, Random Forest memiliki persentase recall sebesar 96.7% lebih baik daripada Decision Tree dan Random Forest. 
Pembentukan Tesaurus pada Cross-Lingual Text dengan Pendekatan Constraint Satisfaction Problem Umy Rizqi; Chastine Fatichah; Diana Purwitasari
Jurnal Teknik ITS Vol 6, No 2 (2017)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (634.967 KB) | DOI: 10.12962/j23373539.v6i2.23686

Abstract

Dokumen tugas akhir dan tesis sering kali disediakan dalam dua bahasa, yaitu bahasa Indonesia dan Inggris. Dalam pencarian, setiap mahasiswa memiliki kecenderungan mencari dokumen dengan menggunakan kata kunci dengan bahasa tertentu. Tujuan dari penelitian ini adalah untuk membangun cross-lingual tesaurus bahasa Indonesia dan bahasa Inggris dengan pendekatan Constraint Satisfaction Problem. Dalam penelitian ini digunakan data Tugas Akhir serta Tesis mahasiswa Institut Teknologi Sepuluh Nopember. Pada pengolahan dokumen dilakukan beberapa langkah yaitu pembentukan pararell corpus, ekstraksi kata, pembobotan kata, dan pembentukan informasi co-occurrence, yang selanjutnya dilakukan Constraint Satisfaction Problem dengan backtracking sebagai solusi pencarian. Pembobotan menggunakan TF-IDF (term frequency–inverse document frequency) Hasil dari proses pembangunan tesaurus, tesaurus yang dibentuk dengan menggunakan CSP menghasilkan precision 91,38% sedangkan tesaurus yang dibentuk tanpa menggunakan CSP menghasilkan precision 45,23%. Pencarian dokumen menggunakan tesaurus menghasilkan recall 86,67%,  precision 100% dan akurasi 86,67%.
Visualisasi Similaritas Topik Penelitian dengan Pendekatan Kartografi Menggunakan Self-Organizing Maps (SOM) Budi Pangestu; Diana Purwitasari; Chastine Fatichah
Jurnal Teknik ITS Vol 6, No 2 (2017)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (588.087 KB) | DOI: 10.12962/j23373539.v6i2.23706

Abstract

Penelitian merupakan salah satu hal yang penting dalam pengembangan bidang keilmuan sehingga dinilai perlu diciptakan sebuah visualisasi Peta Keterkaitan Antar Topik Riset Penelitian, agar mampu memberikan ide dan gambaran bagi calon peneliti dari Indonesia tentang potensi Topik Penelitian yang dapat dikembangkan.Pada penelitian kali ini, akan digunakan Data Penelitian studi dari Resits.its.ac.id sebagai data input. Pemrosesan Data Mining pada data teks seringkali memiliki kendala dalam kata-kata yang terdapat pada corpus terlalu kotor atau biasa disebut stopwords, dan besarnya dimensi fitur yang didapat dari data teks sangat besar. Berdasarkan hasil uji coba, dapat disimpulkan bahwa ekstraksi fitur dan Teknik cluster yang digunakan sudah tepat divalidasi dengan Silhouette Score sebesar 0.5215, dan Cophenet Correlation Coefficient sebsar 0.977. Uji coba diatas menunjukkan bahwa K-means Clustering yang digunakan menghasilkan Cluster yang Cohesive dan Separable ditandai dengan hasil Silhouette Score dan Cophenet Correlation Coefficient yang besar.
Co-Authors Abdillah, Abid Famasya Abdillah, Surya Abid Famasya Abdillah Achmad Affandi Addien Haniefardy Ade Afrian Adhi Nurilham Adi Surya Suwardi Ansyah Adillion, Ilham Gurat Adni Navastara, Dini Agus Budi Raharjo Agus Budi Raharjo Agus Zainal Arifin Agus Zainal Arifin Ahmad Syauqi Ahmad Syauqi Aida Muflichah Akwila Feliciano Akwila Feliciano Alif Akbar Fitrawan, Alif Akbar Alqis Rausanfita Aminul Wahib Aminul Wahib Aminul Wahib Apriantoni Apriantoni Apriantoni, Apriantoni Ardianto Ardianto Ariadi Retno Tri Hayati Arief Rahman Arif Fadllullah Arini Rosyadi Ario Bagus Nugroho Arrie Kurniawardhani Arya Putra Kurniawan Asiyah Nur Kholifah Atikah, Luthfi Bambang Setiawan Baskoro Adi Pratomo Baskoro, Fajar Benito, Davian Budi Pangestu Budi Rahardjo Budi Raharjo, Agus Budiyono, Yanuardhi Arief Buliali, Joko Lianto Cahyaningtyas, Zakiya Azizah Chastine Fatichah Chilyatun Nisa, Chilyatun Christian Sri kusuma Aditya, Christian Sri kusuma Cornelius Bagus Purnama Putra Damayanti, Putri Daniel Oranova Siahaan Daniel Swanjaya Dasrit Debora Kamudi Dhian Kartika Dian Saputra Dini Adni Navastara, Dini Adni Dwi Sunaryono Dwi Sunaryono Edy Sukotjo Eko Riduwan Elshe Erviana Angely Erlinda Argyanti Nugraha Erlinda Argyanti Nugraha Esti Yuniar F.X. Arunanto Fahmi Amiq Fahrur Rozi Fajar Baskoro Fajar Baskoro Falach Asy'ari, Misbachul Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Febri Fernanda Febriliyan Samopa Fransiscus Xaverius Arunanto Galih Hendra Wibowo Ginardi, Raden Venantius Hari Glory Intani Pusposari Gurat Adillion, Ilham Gus Nanang Syaifuddiin Hadziq Fabroyir Hafidz, Abdan Hamidi, Mohammad Zaenuddin Handayani Tjandrasa Hanif Affandi Hartanto Haykal, Muhammad Farhan Herdayanto Sulistyo Putro Hilya Tsaniya Hudan Studiawan Husna, Farida Amila I Ketut Eddy Purnama I Made Satria Bimantara Ilmi, Akhmad Bakhrul Imam Santosa Indra Lukmana Irdayanti, Marina Ivonne Soejitno Juanita, Safitri Juanita, Safitri Juli Purwanto Kardawi, Muhammad Yusuf Kautsar, Faiz Kevin Christian Hadinata Kevin Christian Hadinata Khadijah F. Hayati Kurnia Aji Tritamtama Lailatul Hidayah M. Abdillah M. Abdul Wakhid Mabahist, Fahril Maheswari, Clarissa Luna Mamluatul Hani’ah Mauridhi Hery Purnomo Mirza Hamdhani Misbakhul Munir Irfan Subakti Muhamad Nasir Muhammad Machmud Muhammad Mirza Muttaqi Nabila Puspita Firdi Nada Fitrieyatul Hikmah Nanik Suciati Narandha Arya Ranggianto Nova Rijati Novemi Uki A Novrindah Alvi Hasanah Nugraha, Raditya Hari Nur Azizah, Anisa Nur Hayatin Nurilham, Adhi Oktaviandra Pradita Putri Oktaviandra Pradita Putri, Oktaviandra Pradita Paramastri Ardiningrum Putu Praba Santika Putu Utami Andarini S. Putu Yuwono Kusmawan Raihan, Muhammad Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Nur Esti Anggraini, Ratih Nur Esti Rendra Dwi Lingga P. Resti Ludviani Rio Indralaksono Rizal Setya Perdana Rizka Sholikah Rizka Wakhidatus Sholikah Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Afthoni Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Rully Sulaiman Ryfial Azhar, Ryfial Safhira Maharani Safhira Maharani Safitri, Julia Salim Bin Usman Salim Bin Usman Salsabila Mazya Permataning Tyas Salsabila Salsabila Satrio Hadi Wijoyo Satrio Verdianto Satrio Verdianto Sembiring, Fred Erick Septiyan Andika Isanta Septiyan Andika Isanta Septiyawan Rosetya Wardhana Septiyawan Rosetya Wardhana Sherly Rosa Anggraeni Sherly Rosa Anggraeni Sidharta, Bayu Adjie Sihombing, Drigo Alexander Siti Rochimah Surya Sumpeno Suwida, Katon Syadza Anggraini Tanzilal Mustaqim Tegar Rachman Muzzammil Tesa Eranti Putri Tri Arief Sardjono Tsabbit Aqdami Mukhtar, Tsabbit Aqdami Umy Rizqi Verdianto, Satrio Victor Hariadi Vit Zuraida Wakhid, Muhammad Abdul Wardhana, Septiyawan R. Wardhana, Septiyawan Rosetya Wicaksono, Farhan Wijayanti Nurul Khotimah Wijoyo, Satrio Hadi Windy Deftia Mertiana Wisma Dwi Prastya, Ifnu Wulansari Wulansari Yasinta Romadhona Yatestha, Anak Agung Yoga Yustiawan Yonathan, Vincent Yos Nugroho Yudhi Purwananto Yufis Azhar Yuhana, Umi Laili Yulia Niza Yulia Niza Yulian Findawati Yunianto, Dika R. Zahrul Zizki Dinanto Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas