Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Journal of Artificial Intelligence and Engineering Applications (JAIEA)

FP-Growth Algorithm for Association Model Optimization in Household Sales Data Zulfa Hana Aqliyah; Rudi Kurniawan; Tati Suprapti
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.760

Abstract

This research aims to find the value of support and confidence parameters needed so that associations between products can be identified and get the value of support, confidence, lift for the association rules found, and identify products that have the highest support value in frequent itemsets. The method used is Knowledge Discovery in Databases (KDD) with the stages of data collection, data pre-processing, data transformation, data mining, dan interpretation and evaluation. Sales transaction data was collected from January 1 to September 30, 2024, focusing on support and confidence values. The results showed that the association was successfully found with a parameter value of support 0.02 and confidence 0.5. In the association found, the products SWEAT BRONZE PANTS MINI M5 and SWEAT BRONZE PANTS MINI L5 have a support value of 0.004, confidence of 0.073, and lift of 1.421. These values indicate that although the frequency of this association is low, its strength exceeds that of a random association, which can be used in marketing strategies like product bundling.The product “SENSI PEREKAT S20” has the highest support of 0.149 (14.9%. The findings provide insight into the use of data mining algorithms to design data-driven marketing strategies and more efficient inventory management.
Analysis of Beverage Sales Data Using the FP-Growth Algorithm at Sini Aja Cafe Widisa Adi Kumara; Rini Astuti; Willy Prihartono; Tati Suprapti
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.772

Abstract

The growth of information technology and data mining techniques has greatly helped analyze consumer purchasing behavior, particularly in marketing and inventory management. This study aims to uncover association patterns between products frequently bought by customers at Sini Aja Cafe and to measure these patterns' support and confidence values. The research uses Knowledge Discovery in Databases (KDD), including stages like data selection, preprocessing, transformation, applying the FP-Growth algorithm, and interpreting results. Data from 1,083 beverage sales transactions at Sini Aja Cafe from August 1 to October 31, 2024. The findings reveal five significant association rules when applying a minimum support of 0.1 (10%) and confidence of 0.3 (30%). Notably, if customers buy Red Velvet Oreo, there is a 56% chance they will also buy Thai Tea. Thai Tea sales dominate with a support value 0.557 (55.7%). The support values of the association rules range from 0.141, categorized as medium, and the confidence values range from 0.235, categorized as low. These findings offer valuable insights for the cafe owner to optimize operations, enhance customer satisfaction, and increase profits.
Optimizing Naïve Bayes Algorithm Through Principal Component Analysis To Improve Dengue Fever Patient Classification Model Santi Nurjulaiha; Rudi Kurniawan; Arif Rinaldi Dikananda; Tati Suprapti
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.798

Abstract

Dengue fever is an infectious disease that has a significant impact on public health in tropical regions, including Indonesia. Early detection and proper classification of DHF patients is essential to reduce severity and mortality. For this reason, a method that can improve the accuracy in diagnosing this disease is needed. Principal Component Analysis (PCA) and Naïve Bayes (NB) are two commonly used techniques in medical data analysis. PCA is used to reduce the dimensionality of data to reduce complexity, while Naïve Bayes is used for classification of data based on probability. This study aims to optimize the use of PCA and Naïve Bayes in improving the accuracy of the dengue patient classification model. The method used in this study involves processing a medical dataset of dengue patients containing various clinically relevant attributes. The dataset was then processed using PCA to reduce dimensionality and identify key features that affect classification. Next, Naïve Bayes was applied to classify the data based on the selected features. This study compares the performance of classification models that use a combination of PCA and Naïve Bayes with models that only use Naïve Bayes without dimensionality reduction. The results show that the use of PCA in data processing significantly improves the accuracy of the classification model compared to the model that only uses Naïve Bayes. The combination of PCA and Naïve Bayes produces a more efficient model and has a higher accuracy rate in identifying patients with DHF risk. Thus, the application of PCA and Naïve Bayes in the classification of DHF patients can be an effective tool in assisting the medical diagnosis process, which in turn can reduce misdiagnosis and improve patient recovery rates. This research contributes to the development of artificial intelligence technology in the medical field, especially to improve the accuracy of dengue disease diagnosis, and serves as a basis for further research in the use of machine learning techniques in healthcare. This study analyzes the performance of the Naïve Bayes algorithm in classifying dengue fever patient data, by comparing models that use Principal Component Analysis (PCA) as a dimension reduction method and models that do not use it. The results show that the Naïve Bayes model without PCA has an accuracy of 49.96%, which is close to the random guess rate. This finding indicates that the model is less effective in recognizing patterns in the data. In contrast, the application of PCA successfully increased the model's accuracy to 50.03%
Optimizing Email Spam Classification Using Naïve Bayes and Principal Component Analysis Shinta Virgiana; Rudi Kurniawan; Tati Suprapti
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.803

Abstract

In the ever-evolving digital era, email spam filtering is an important challenge to maintain the security and comfort of email services. The Naïve Bayes algorithm is widely used for spam email classification because of its ability to manage large data, although there are still limitations in terms of accuracy, precision and recall. This research aims to improve spam email classification performance by combining Naïve Bayes and Principal Component Analysis (PCA) to optimize model accuracy and explore optimal parameters in the reduction dimension. The research methodology goes through the Knowledge Discovery in Database (KDD) stages which include selection, preprocessing, transformation using PCA, development of a classification model using Naïve Bayes, and evaluation of model performance. The dataset used consists of emails categorized as spam and non-spam. The experimental results show that the combination of Naïve Bayes and PCA achieves the highest accuracy of 99.24% with 7 principal components. The fixed number of components approach shows better performance compared to preserving variance, emphasizing the importance of selecting appropriate PCA parameters in improving the effectiveness of model classification. This research shows that PCA not only reduces the complexity of the dataset but also increases the efficiency of the classification algorithm.
Co-Authors Abdul Hakim Abdul Mukhyidin Abrar Bayan, Athaullah Achmad Suharno Adam Firmansyah Ade Irma Purnamasari Ade Irma Purnamasari Aditia agus bahtiar Ahmad Faqih Ahmad Faqih Aldi Setiawan Ali Ali Alpian Novansyah, Indi Amaliah, Novi Andi Ardiansyah Andri Yanto Apriliani, Yuni Aribah, Firyal Arif Rinaldi Dikananda ASEP SAEFUDDIN Auliya Azhar, Alwan Cep Lukman Rohmat Christian Anderson Wint's II, Hans Darussalam, Luthvi Nurfauzi Dayanti, Resda Dian Ade Kurnia Dodi Solihin Doni Anggara Dwi Prasetyo Faujatun Hasanah Fazrian, Vivi Feri Irawan Irawan Fikri, Achmad Fitri Adha Hariyati Airi Fitriani Agustina Fitriani Fitriani Gifthera Dwilestari Gifthera Dwilestari Gilang Perwati, Intan Gilang Ramadhan Gustiani Regina Pratama Putri Gustino, Gustino Hadianti, Isan Hafshoh Habiballoh Hajaroh, Hajaroh Hartati Hartati Hayati, Umi Hendriyansyah, Hendriyansyah Hidayat, Manarul Hidayat, Muhamad Taufiq Hidayat, Peri Husni Mubarok Ilham Kurniawan Imam Arifin imam maulana, imam Indrawan, Heru Irfan Ali Irma Purnamasari, Ade Kaslani Khoirunisa, Irma Lestari, Hasanah Lukman Rohmat, Cep Mahda, Muhammad Manarul Hidayat Martanto . Maryam, Beby Muhaimin, Ahmad Muhamad Basysyar, Fadhil Mulyawan Nana Siti Nurjanah Narasati, Riri Narasati Naufan, Muhammad Hilmy Nining Rahaningsih Nur Amalia Nurmala, Sri Pratiwi, Intan Purnamasari, Ade Irma Raditya Danar Dana Rananda Deva Rian Raudotul Janah, Fina Rini Astuti Rini Astuti Riri Narasati Rizki Ani, Fitri Rosdiana Rosdiana Rudi Kurniawan Rudi Kurniawan Rudi Kurniawan Ruli Herdiana Ryan Hmonangan Saeful Anwar Saeful Anwar, Saeful Sajidan, Dzikri Santi Nurjulaiha Shalihah, Ghina Shinta Virgiana Silalahi, Ryan H Siti Aisah, Iis siti azhar Sri Nurmala, Ai Suarna, Nana Suharno, Achmad Sukma Maula, Intan Syajida, Hanna Syaripah, Imas Tegar Lazuardi, Muhammad Tengku Riza Zarzani N Tohidi, Edi Tri Aditama Tri Gustiane, Indri Umi Hayati Umi Hayati Utami Aryanti Vinna Agustina Wahyudin, Edi Widiawati, Fitri Widisa Adi Kumara Wijaya, Yudhitira Arie Willy Prihartono Yudhistira Arie Wijaya Yusuf Sidiq, Yusuf Sidiq Zaki Nur Rahmat Hidayat Zulfa Hana Aqliyah