Kerista Sebayang
Department Of Physics, University Of North Sumatra - USU, Jl. Bioteknologi No.1, Kampus Padang Bulan, Medan 20155

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Sains Materi Indonesia

EFFECT OF Mn-Ti IONS DOPING AND SINTERING TEMPERATURE ON PROPERTIES OF BARIUM HEXAFERRITE Achmad Maulana Soehada; Kerista Sebayang; Toto Sudiro; Candra Kurniawan; Perdamean Sebayang
Jurnal Sains Materi Indonesia Vol 15, No 4: JULI 2014
Publisher : Center for Science & Technology of Advanced Materials - National Nuclear Energy Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (279.712 KB) | DOI: 10.17146/jsmi.2014.15.4.4337

Abstract

EFFECT OF Mn-Ti IONS DOPING AND SINTERING TEMPERATURE ON PROPERTIES OF BARIUM HEXAFERRITE. Mn-Ti doped (0, 0.1, 0.4, 0.5, and 0.6 mole%-barium hexaferrite powders have been prepared from BaCO3, Fe2O3, TiO2 andMnO powder by mechanical alloying technique for 20 hours. The mixture powder were grinded and then dried at 100 °C for 24 hours, followed by calcined at 1,000 °C for 2 hours. The calcined powder was then crushed into 400 mesh (38 μm) in particle size. X-Ray Diffraction analysis was performed to determine the phase formed. The powder was mixed with 3 wt%Celuna WE -518 polymer, and compressed with applied force of 5 tons. The sintering process was done at temperatures of 1100 °C and 1150 °C for 2 hours. The microstructure of sintered samples was observed by Scanning Electron Microscope - Energy Dispersive X-Ray Spectroscopy (SEM-EDS). The magnetic properties and Reflection Loss (RL) was measured by permeagraph Magnet-Physik and Vector Network Analyzer (VNA), respectively. The results show that the remanance (Br) of samples are likely to decrease with increase in %mol of Mn-Ti and the optimum coercivity (HCJ) 4,42 kOe was achieved at 0,5 mole% Mn-Ti. The maximum reflection loss of -25,6 dB was obtained at 0,4mole%Mn-Ti with sintering temperature of 1100 °C for 2 hours. Accordingly, it can be potentially used for microwave absorption application.
PEMBUATAN ANODA Li4Ti5O12 DAN STUDI PENGARUH KETEBALAN ELEKTRODA TERHADAP PERFORMA ELEKTROKIMIA BATERAI ION LITHIUM Slamet Priyono; Mia Aulia Dhika; Kerista Sebayang
Jurnal Sains Materi Indonesia Vol 17, No 4: JULI 2016
Publisher : Center for Science & Technology of Advanced Materials - National Nuclear Energy Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/jsmi.2016.17.4.4175

Abstract

PEMBUATAN ANODA Li4Ti5O12 DAN STUDI PENGARUH KETEBALAN ELEKTRODA TERHADAP PERFORMA ELEKTRO KIMIA BATERAI ION LITHIUM. Telah dilakukan pembuatan serbuk Li4Ti5O12 dan studi pengaruh ketebalan terhadap performa elektrokimia baterai ion lithium. Li4Ti5O12 disintesis dari bahan baku LiOH.H2O dan TiO2 dengan metode metalurgi serbuk. Lembaran elektroda dibuat dengan mencampurkan serbuk Li4Ti5O12 dengan PVDF, AB serta pelarut N-N,DMAC hingga menjadi lumpur dan dilapiskan pada Cu foil dengan variasi ketebalan 50 µm, 80 µm, dan 120 µm. Dari lembaran tersebut dibuat baterai setengah sel dengan menggunakan elektroda referensi metalik lithium dan elektrolit LiPF6. Karakterisasi yang dilakukan meliputi X-Ray Diffraction (XRD) untuk mengetahui struktur kristal dan fasa serbuk dan performa setangah sel baterai dilakukan dengan uji Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV) dan Charge/Discharge (CD). Dari hasil pengujian XRD menunjukkan ada dua fasa yang terbentuk, yaitu fasa Li4Ti5O12 sebesar 77,3 % dengan struktur kristal cubic dan fasa TiO2 rutile sebesar 22,7% dengan struktur kristal tetragonal. Hasil konduktivitas tertinggi pada lembaran anoda dengan menggunakan Electrochemical Impedance Spectroscopy (EIS) adalah 3,66 x 10-5 S/cm pada ketebalan 50 µm. Hasil CV menunjukkan semakin tipis lembaran anoda maka semakin cepat interkalasi dan de-interkalasi. Sedangkan, hasil CD menunjukkan bahwa ketebalan lapisan mempengaruhi nilai kapasitas spesifik, semakin tebal lapisan semakin menurun nilai kapasitas spesifiknya. Kapasitas sel baterai yang baik diperoleh pada ketebalan lapisan 50 µm, dengan kapasitas charge sebesar 146,6 mAh/g dan kapasitas discharge sebesar 146,09 mAh/g