p-Index From 2020 - 2025
7.444
P-Index
This Author published in this journals
All Journal Jurnal Edukasi Universitas Jember Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Jurnal Teknologi Informasi dan Ilmu Komputer International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Register: Jurnal Ilmiah Teknologi Sistem Informasi Jurnal Ilmiah Universitas Batanghari Jambi Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Bisma: Jurnal Bisnis dan Manajemen Martabe : Jurnal Pengabdian Kepada Masyarakat MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer JURNAL AKUNTANSI KEUANGAN DAN MANAJEMEN Jurnal Tekinkom (Teknik Informasi dan Komputer) Journal of Soft Computing Exploration Studi Ilmu Manajemen dan Organisasi Jurnal Abdimas Ekonomi dan Bisnis Transekonomika : Akuntansi, Bisnis dan Keuangan Perwira Journal of Science and Engineering (PJSE) Reviu Akuntansi, Manajemen, dan Bisnis PENA ABDIMAS : Jurnal Pengabdian Masyarakat Journal of Advances in Information Systems and Technology Indonesian Journal of Informatic Research and Software Engineering Jurnal Pemberdayaan Ekonomi eProceedings of Management Journal of Student Research Exploration Journal of Information System Exploration and Research Recursive Journal of Informatics IJEB JPM Media Penelitian dan Pengembangan Kesehatan Jurnal Ekonomi, Manajemen, Akuntansi Jurnal Abdi Negeri
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Teknologi Informasi dan Ilmu Komputer

Peningkatan Akurasi Klasifikasi Algoritma C 4.5 Menggunakan Teknik Bagging pada Diagnosis Penyakit Jantung Prasetyo, Erwin; Prasetiyo, Budi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 5: Oktober 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020752379

Abstract

Perkembangan teknologi yang begitu pesat menjadikan kebutuhan akan suatu informasi semakin meningkat, sehingga keakuratan suatu informasi menjadi suatu hal yang sangat penting, Terutama keakuratan informasi yang dibutuhkan dalam memprediksi penyakit dalam bidang medis. Dalam proses pengumpulan suatu informasi dibutuhkan metode tertentu, sehingga informasi yang telah diproses menjadi sebuah pengetahuan menggunakan suatu metode tertentu disebut dengan penambangan data atau istilah lainnya adalah data mining. Umumnya data mining digunakan untuk memprediksi suatu penyakit yang bersumber dari data rekam medis pasien, khususnya penyakit jantung. Data penyakit jantung diambil dari dataset UCI Machine Learning Repository. Tujuan dari penulis melakukan penelitian ini yaitu untuk mengetahui penerapan teknik bagging pada algoritma C4.5, mengetahui hasil akurasi dalam algoritma C4.5, dan membandingkan tingkat akurasi dari penerapan teknik bagging pada algoritma C4.5. Dataset yang diklasifikasikan dengan algoritma C4.5 memperoleh akurasi sebesar 72,98%. Hasil akurasi ini dapat ditingkatkan dengan menerapkan teknik bagging menghasilkan akurasi sebesar 81,84%, sehingga terjadi peningkatan akurasi sebesar 8,86%  dari penerapan teknik bagging pada Algoritma C4.5. AbstractThe quick development of technology makes the need for information increase, so that the accuracy of the information becomes a very important thing, especially the accuracy of the information needed in predicting diseases in the medical field. In the process of gathering information certain methods are needed, so information that has been processed into knowledge using a certain method is called data mining or other terms is data mining. Data mining is generally used to predict a disease originating from patient medical record data, especially heart disease. Heart disease data is taken from the UCI Machine Learning Repository dataset. The purpose of the authors conducting this research is to determine the application of bagging techniques on the C4.5 algorithm, determine the accuracy of the results in the C4.5 algorithm, and compare the level of accuracy of the application of bagging techniques on the C4.5 algorithm. The dataset classified by the C4.5 algorithm obtained an accuracy of 72.98%. The results of this accuracy can be improved by applying bagging techniques resulting in an accuracy of 81.84%, resulting in an increase in accuracy of 8.86% from the application of bagging techniques in the C4.5 Algorithm.
Optimasi Algoritma Naive Bayes dengan Diskritisasi K-Means pada Diagnosis Penyakit Jantung Fajriati, Nafa; Prasetiyo, Budi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 3: Juni 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106510

Abstract

Penyakit jantung iskemik adalah salah satu jenis penyakit kardiovaskular dengan jumlah penderita yang besar dan menjadi penyebab utama kematian di dunia. Disamping itu, penyakit jantung juga menyebabkan kerugian ekonomi. Diagnosis penyakit jantung pada tahap awal dapat membantu mengurangi risiko kematian dan tingginya biaya perawatan akibat penyakit jantung. Diagnosis penyakit merupakan proses penting yang harus dilakukan secara akurat agar tidak terjadi kesalahan diagnosis. Data mining dapat diterapkan untuk meningkatkan akurasi dan mengurangi jumlah kesalahan diagnosis. Salah satu teknik data mining adalah klasifikasi. Naïve Bayes merupakan algoritma klasifikasi yang memiliki kemampuan yang cukup baik untuk membangun model pengklasifikasi. Pada penelitian ini, dilakukan klasifikasi penyakit jantung menggunakan algoritma Naïve Bayes. Dataset yang digunakan yaitu Cleveland heart disease dataset dari UCI Machine Learning Repository. Untuk meningkatkan akurasi klasifikasi menggunakan algoritma Naive Bayes, atribut kontinu pada dataset diubah menjadi atribut diskrit dengan diskritisasi K-means. Diskritisasi K-means mengubah nilai setiap atribut kontinu menjadi kategori-kategori diskrit berupa cluster sejumlah k yang terbentuk dari proses algoritma K-means. Hal tersebut dilakukan karena algoritma Naïve Bayes menunjukkan kemampuan klasifikasi yang lebih baik apabila menggunakan data masukan berupa diskrit dibanding kontinu. Hasil akurasi yang diperoleh dari algoritma Naïve Bayes tanpa menerapkan diskritisasi K-means pada Cleveland heart disease dataset adalah 86,89%, sedangkan hasil akurasi yang diperoleh dari algoritma Naïve Bayes dengan menerapkan diskritisasi K-means pada Cleveland heart disease dataset adalah 88,52%. Berdasarkan perbandingan akurasi yang dihasilkan, dapat diketahui adanya peningkatan akurasi sebesar 1,63%. Hal tersebut menunjukkan bahwa diskritisasi K-means berperan dalam mengoptimalkan kinerja algoritma Naïve Bayes sehingga menghasilkan akurasi yang lebih baik. Abstract Ischemic heart disease is a type of cardiovascular disease with a large number of sufferers and is the leading cause of death in the world. In addition, heart disease also causes economic losses. Diagnosing heart disease early can help reduce the risk of death and the high costs of treatment for heart disease. Diagnosis of the disease is an important process that must be carried out accurately to avoid misdiagnosis. Data mining can be applied to improve accuracy and reduce the number of misdiagnoses. One of the data mining techniques is classification. Naïve Bayes is a classification algorithm that has a fairly good ability to build a classifier model. In this study, heart disease was classified using the Naïve Bayes algorithm. The dataset used is the Cleveland heart disease dataset from the UCI Machine Learning Repository. To improve classification accuracy using the Naive Bayes algorithm, continuous attributes in the dataset are changed to discrete attributes using K-means discretization. K-means discretization changes the value of each continuous attribute into discrete categories in the form of k clusters formed from the K-means algorithm process. This is done because the Naïve Bayes algorithm shows a better classification ability when it uses discrete rather than continuous input data. The accuracy results obtained from the Naïve Bayes algorithm without applying the K-means discretization to the Cleveland heart disease dataset are 86.89%, while the accuracy results obtained from the Nave Bayes algorithm by applying the K-means discretization to the Cleveland heart disease dataset are 88.52%. . Based on the comparison of the resulting accuracy, it can be seen that there is an increase in accuracy of 1.63%. This shows that K-means discretization plays a role in optimizing the performance of the Naïve Bayes algorithm to produce better accuracy.
Co-Authors Afrizal Rizqi Pranata, Afrizal Rizqi Ahmad Roziqin, Ahmad Aisy, Salsabila Rahadatul Aji Purwinarko, Aji Alamsyah - Amidi Amidi, Amidi Anggraini, Tasya Fitria Anggyi Trisnawan Putra Ardila Rahma, Rana Aziz, Alif Abdul Azura, Amberia Narfi Bachtiar, Muhammad Irgi Bambang Widjajanta, Bambang Bayuaji, Hibatullah Zamzam Tegar Beta Noranita Biyantoro, Arell Saverro D.W, Made Bagus Paramartha Didimus Tanah Boleng Dinova, Dony Benaya Endang Sugiharti, Endang Fachrezi, Farhan Rifa Fadhilah, Muhammad Syafiq Fadlil, Affan Fajriati, Nafa Fata, Muhamad Nasrul Fata, Muhamad Nasrul Ferninda, Varin Fikri Mohamad Rizaldi Fitriana, Jevita Dwi Hakim, Ade Anggian Hakim, M Faris Al Hakim, M. Faris Al Hakim, Roshan Aland Hani Fitria Rahmani Ilham Maulana Jhonatan, Edward Jumanto Jumanto , Jumanto Jumanto Jumanto, Jumanto Jumanto Unjung KA, Cecep Bagus Suryadinata Korina, Nanda Putri Leo nardo Lestari , Apri Dwi Lestari, Apri Dwi Lestari, Fitri Duwi Lintang, Irendra M. Faris Al Hakim Makrina Tindangen Maulidia Rahmah Hidayah, Maulidia Rahmah Much Aziz Muslim Mukhlisin, Ahmad Munahefi, Detalia Noriza Mustaqim, Amirul Muzayanah, Rini Naufal Zuhdi, Hamzah Ndruru, Toni Krisman Nelly, Fredy Kusuma Nendya, Bima Nicko, Robertus Nikmah, Tiara Lailatul Nina Fitriani, Nina Ningsih, Maylinna Rahayu Nisa, Intan Khairun Niswah Baroroh Partini, Emilia Paundra, Fajar Pertiwi, Dwika Ananda Agustina Pradana, Fadli Dony PRASETYO, ERWIN Pratama, Muhammad Hasbi Puspo Dewi Dirgantari Rachmawati, Eka Yuni Rachmawati, Eka Yuni Rahmat Gernowo Ramadhian, M. Arief Rahman Ratih Hurriyati Riesnandar, Edi Ristiawati, Monika Riza Arifudin Robianty, Nenden Sondari Rofik Rofik, Rofik S.Pd. M Kes I Ketut Sudiana . Sadid, Moh Naufal Salsabila, Malika Putri Saparina, Iska Ayu Saputra, Angga Riski Dwi Satriawan, Grace Yudha Satrio Ardiansyah, Adi Seivany, Ravenia Septian, M Rivaldi Ali Subhan Subhan Sugiharto, Muhammad Sulastri, Ai Syaharani, Reisya Triyadi, Indra Vember, Hilda Wahyu, Aufa Azfa Yahya Nur Ifriza Yosza Dasril Yulia Nur Hasanah