Indonesia merupakan salah satu produsen kopi terbesar di dunia, dengan Provinsi Nusa Tenggara Barat (NTB) sebagai salah satu daerah penghasil utama. Produksi kopi di NTB mengalami fluktuasi tahunan yang dipengaruhi oleh berbagai faktor, seperti luas lahan, kondisi iklim, dan teknik budidaya. Untuk mendukung perencanaan dan pengambilan keputusan, diperlukan metode prediksi yang akurat. Penelitian ini bertujuan memprediksi hasil produksi kopi menggunakan pendekatan Artificial Neural Network (ANN) dengan algoritma Backpropagation, yang mampu mempelajari pola non-linear antara variabel input dan output. Dataset yang digunakan berasal dari Badan Pusat Statistik (BPS) Provinsi NTB untuk periode 2015–2024, dengan variabel Tahun, Luas Lahan (Ha), dan Produksi (Ton). Tahapan penelitian meliputi preprocessing data dengan Min-Max Scaling, perancangan arsitektur ANN dengan struktur 2–8–8–1, pelatihan model menggunakan optimizer Adam, serta evaluasi dengan metrik MSE, RMSE, MAE, dan MAPE. Hasil evaluasi menunjukkan bahwa model terbaik memiliki nilai MAPE sebesar 6.93%, yang termasuk kategori akurasi sangat baik. Prediksi produksi untuk periode 2025–2030 menunjukkan tren peningkatan, dari 7.748 ton pada tahun 2025 menjadi 10.262 ton pada tahun 2030. Hasil ini membuktikan bahwa ANN dengan algoritma Backpropagation efektif digunakan untuk memprediksi hasil produksi kopi dan berpotensi mendukung pengambilan keputusan di sektor pertanian.