Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Sistem Informasi Geografis Risiko Kemunculan Rip Current Menggunakan Decision Tree C4.5 Made Leo Radhitya; Agus Harjoko
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 10, No 2 (2016): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.15949

Abstract

One of the dangers that occur at the beach is rip current. Rip current poses significant danger for beachgoers. This paper proposes a method to predict the rip current's occurence risk by using decision tree generated using C4.5 algorithm. The output from the decision tree is rip current's occurrence risk. The case study for this research is the beach located at Rote Island, Rote Ndao, Nusa Tenggara Timur. Evaluation result shows that the accuracy is 0.84, and the precision is 0.61. The average recall value is 0.68 and the average F-measure is 0.59 in the range 0 to 1.
Electroencephalogram-Based Emotion Classification Using Machine Learning and Deep Learning Techniques Mastrika Giri, Gst Ayu Vida; Radhitya, Made Leo
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 18, No 3 (2024): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.96665

Abstract

 Electroencephalogram (EEG) records brain activity as electrical currents to discern emotions. As interest in human-computer emotional connections rises, reliable and implementable emotion recognition algorithms are essential. This study classifies EEG waves using machine and deep learning. A four-channel Muse EEG headband recorded neutral, negative, and positive emotions for the publicly available Feeling Emotions EEG dataset. Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were utilized for deep learning, while SVM, K-NN, and MLP were used for machine learning. The models were assessed for accuracy, precision, recall, and F1-Score. SVM, K-NN, and MLP have accuracy scores of 0.98, 0.95, and 0.97. Deep learning methods CNN, LSTM, and GRU had 0.98, 0.82, and 0.97 accuracy. SVM and CNN surpassed other approaches in accuracy, precision, recall, and F1-Score. The research shows that machine learning and deep learning can classify EEG signals to identify emotions. High accuracy results, especially from SVM and CNN, suggest these models could be used in emotion-aware human-computer interaction systems. This study adds to EEG-based emotion classification research by revealing model selection and parameter tweaking strategies for better categorization.