Dwita, Olga Mauri Sandi
Departemen Statistika Institut Teknologi Sepuluh Nopember Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Sains dan Seni ITS

Prediksi Pergerakan Naik Turun Harga Saham Berdasarkan Headline Berita Menggunakan Support Vector Machine Dan Naive Bayes Classifier Dwita, Olga Mauri Sandi; Mukarromah, Adatul
Jurnal Sains dan Seni ITS Vol 13, No 6 (2024)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373520.v13i6.156225

Abstract

Saham merupakan bentuk kepemilikan dalam perusahaan yang dipengaruhi oleh faktor ekonomi dan kinerja perusahaan. Penelitian ini memprediksi harga saham SMGR.JK dengan menggunakan skor sentimen dari judul berita di situs bisnis.com dan Google News dan Google News serta fitur time-series harga saham, diklasifikasikan menjadi kategori naik dan turun berdasarkan pendekatan abnormal return. Dalam penelitian ini, model Support Vector Machine (SVM) dipilih karena kemampuannya dalam menangani data yang tidak linear dan kemampuannya yang terbukti unggul dalam klasifikasi kompleks. Di sisi lain, Naive Bayes Classifier (NBC) dipilih karena kesederhanaannya dan kecepatan komputasinya yang efisien, meskipun tidak selalu mampu menangani data non-linear dengan baik. Hasil penelitian menunjukkan bahwa model SVM secara konsisten mengungguli NBC baik pada data pelatihan maupun pengujian. Pada data pengujian, model SVM mencapai akurasi sebesar 72,88%, presisi 72,86%, recall 72,91%, dan F1-score 72,88%. Keberhasilan model SVM dalam mencapai hasil ini menunjukkan kemampuannya dalam memberikan prediksi yang akurat dan konsisten. Selain itu, hasil prediksi SVM pada tanggal 29 Desember 2023 terbukti sesuai dengan pergerakan harga saham aktual pada tanggal tersebut. Meskipun model SVM menunjukkan performa yang baik, penting untuk melakukan analisis lebih lanjut dengan data yang lebih luas dan periode waktu yang lebih panjang untuk memastikan keandalan dan efektivitas model ini dalam jangka panjang. Evaluasi berkelanjutan akan membantu mengidentifikasi potensi perbaikan dan memastikan bahwa model tetap relevan dengan kondisi pasar yang berubah.