This study employs established point estimation techniques in inferential statistics—including Ordinary Least Squares (OLS), Maximum Likelihood Estimation (MLE), Ridge regression, and Lasso regression—to analyze a 30-month dataset on energy consumption, billing, and revenue collection from Abubakar Tafawa Balewa University (ATBU), Bauchi. The primary objective is to assess the accuracy and efficiency of parameter estimation methods for predicting revenue based on energy billed. Using regression-based models, the study evaluates performance across two sites: the Main Campus and the Permanent Site. Empirical findings demonstrate strong model explanatory power, with R² values of approximately 0.90 and 0.80, respectively, indicating a high degree of reliability in the predictive capacity of the models. OLS is shown to provide unbiased estimates, while regularization techniques such as Ridge and Lasso improve model robustness by addressing multicollinearity and overfitting. The results highlight the practical applicability of statistical modeling in energy revenue forecasting and offer valuable insights for institutional energy management. The study concludes by recommending the integration of regularized regression techniques for more resilient forecasting frameworks in similar energy consumption environments.