Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer

Recognizing Pneumonia Infection in Chest X-Ray Using Deep Learning Ni Wayan Sumartini Saraswati; I Wayan Dharma Suryawan; Ni Komang Tri Juniartini; I Dewa Made Krishna Muku; Poria Pirozmand; Weizhi Song
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 23 No 1 (2023)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i1.3197

Abstract

One of the diseases that attacks the lungs is pneumonia. Pneumonia is inflammation and fluid in the lungs making it difficult to breathe. This disease is diagnosed using X-Ray. Against the darker background of the lungs, infected tissue shows denser areas, which causes them to appear as white spots called infiltrates. In the image processing approach, pneumonia-infected X-rays can be detected using machine learning as well as deep learning. The convolutional neural network model is able to recognize images well and focus on points that are invisible to the human eye. Previous research using a convolutional neural network model with 10 convolution layers and 6 convolution layers has not achieved optimal accuracy. The aim of this research is to develop a convolutional neural network with a simpler architecture, namely two convolution layers and three convolution layers to solve the same problem, as well as examining the combination of various hyperparameter sizes and regularization techniques. We need to know which convolutional neural network architecture is better. As a result, the convolutional neural network classification model can recognize chest x-rays infected with pneumonia very well. The best classification model obtained an average accuracy of 89.743% with a three-layer convolution architecture, batch size 32, L2 regularization 0.0001, and dropout 0.2. The precision reached 94.091%, recall 86.456%, f1-score 89.601%, specificity 85.491, and error rate 10.257%. Based on the results obtained, convolutional neural network models have the potential to diagnose pneumonia and other diseases.
Co-Authors Agus Ari Iswara, Agus Ari Agus Tommy Adi Prawira Kusuma Andika, I Gede Aristana, Made Dona Wahyu Atmaja, Ketut Jaya Aulia Iefan Datya Aulia Iefan Datya Ayu J Sastaparamitha, Ni Nyoman Bedjo Purwantoro Christian Tonyjanto Christian Tonyjanto Christian Tonyjanto Christina Purnama Yanti Dewa Ayu Indah Cahya Dewi Dewa Putu Yudhi Ardhiana Dewa Putu Yudhi Ardiana Dirgayusari, Ayu Manik Dwi Novitasari Eddy Hartono Eddy Hartono Eddy Hartono Gede Surya Mahendra Hidayatulloh, Fachmi I Dewa Made Krishna Muku I Dewa Made Krishna Muku I Gede Iwan Sudipa I Gede Made Yudi Antara I Gede Sujana Eka Putra, I Gede Sujana Eka I Gusti Putu Suharta I Kadek Agus Bisena I Made Andi Kertha Yasa I Putu Adi Pratama, I Putu Adi I Putu Arya Mulyawan I Putu Dedy Sandana I Wayan Darmadi I Wayan Lasmawan I WAYAN SUDIARSA J Sastaparamita, Ni Nyoman Ayu Juniartini, Ni Komang Tri Kompiang Martina Dinata Putri Kompiang Martina Dinata Putri Luh Putu Rara Ayu Ratnaningrum Made Dona Wahyu Aristana Made Suci Ariantini Made Swamahendra Mulyawan, I Putu Arya Murpratiwi, Santi Ika Ni Kadek Ariasih Ni Kadek Ariasih, Ni Kadek Ni Komang Tri Juniartini Ni Luh Putu Agetania NI LUH PUTU AGETANIA . NI LUH PUTU LABASARIYANI NI LUH PUTU MERY MARLINDA Ni Made Lisma Martarini Ni Made Mila Rosa Desmayani, Ni Made Mila Rosa Ni Nyoman Ayu J. Sastaparamitha Ni Putu Eka wirayanti Ni Putu Widantari Suandana Ni Putu Widantari Suandana Nirwana, Ni Kade Ayu Poria Pirozmand Pramawati, I.D.A Tantri Pramita, Dewa Ayu Kadek Putu Ananda Sitarasmi Putu Gede Surya Cipta Nugraha Putu Kerthi Nitiasih Putu Nanci Riastinia Putu Shinta Noviaty PUTU SUGIARTAWAN Putu Wida Gunawan Santi Ika Murpratiwi Saraswati, Ni Wayan Sumartini Sari, Ni Luh Pangestu Widya Sastaparamitha, Ni Nyoman Ayu J. Waas, Devi Valentino Wardani, Ni Wayan Weizhi Song Yuri Prima Fittryani Yuri Prima Fittryani, Yuri Prima