Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Informatika: Jurnal Pengembangan IT

Sistem Deteksi Kemurnian Beras berbasis Computer Vision dengan Pendekatan Algoritma YOLO Nova Eka Budiyanta; Melisa Mulyadi; Harlianto Tanudjaja
Jurnal Informatika: Jurnal Pengembangan IT Vol 6, No 1 (2021): JPIT, Januari 2021
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v6i1.2309

Abstract

Penelitian ini bertujuan untuk menerapkan sistem deteksi kemurnian beras terhadap campuran kotoran untuk dapat digunakan sebagai parameter nilai untuk mensortir kotoran yang terdeteksi pada proses kontrol kualitas beras. Sistem yang dikembangkan pada penelitian ini berbasis computer vision menggunakan kamera sebagai sensor. Data citra yang didapat dari kamera selanjutnya diproses untuk mengenali objek beras yang murni dan objek kotoran yang tercampur pada kumpulan beras. Penelitian ini berfokus pada algoritma deteksi objek batu atau kerikil (gravel) pada proses produksi beras. Proses deteksi objek pada penelitian ini menggunakan metode You Only Look Once (YOLO) v3. Secara keseluruhan sistem deteksi objek pada penelitian ini berjalan baik. Proses pelatihan model berhasil meminimalisir loss secara signifikan dengan nilai loss sebesar 1.89 di iterasi ke 1000 menjadi 0.16 di iterasi ke 15000. Seiring dengan keberhasilan proses pelatihan model, pengujian model pada penerapan proses deteksi juga berjalan baik yang ditunjukkan dengan nilai rerata akurasi sebesar 86.11%.
Rancang Bangun Mesin Presensi berbasis Metode Pengenalan Wajah HoG berbantuan Proses Klasifikasi Linear SVM Samuel Matthew; Ferry Rippun Gideon Manalu; Nova Eka Budiyanta
Jurnal Informatika: Jurnal Pengembangan IT Vol 7, No 1 (2022): JPIT, Januari 2022
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v7i1.2843

Abstract

Di dalam daerah perkantoran, salah satu benda yang sering disentuh adalah alat presensi/pencatat kehadiran. Studi ini bertujuan untuk menerapkan sistem presensi berbasis metode pengenalan wajah menggunakan Raspberry Pi dan kamera dilengkapi dengan sensor pendeteksi suhu tubuh berbantuan aplikasi web. Pendekatan pengenalan wajah yang dilakukan dalam studi ini adalah Histogram of Oriented Gradients (HoG) didukung dengan linear Support Vector Machine (SVM). Hasil yang didapatkan dalam studi ini berupa sebuah mesin presensi yang mampu mengenali wajah pengguna yang sudah terdaftar dengan tingkat akurasi sebsar 98% pada 43,02 frame per detik (idle) dan 2,90 frame per detik (aktif) dengan menggunakan dataset berisikan 20 data tiap wajah (20 data x 20 wajah = 400 data). Sensor yang digunakan dapat mengukur suhu dengan akurasi ±0,5°C. Daftar kehadiran dapat diakses oleh pihak yang berkepentingan melalui situs web yang menampilkan data dari basis data. Untuk menanggulangi kesalahan sistem pada saat uji coba, presensi secara manual dapat dilakukan melalui aplikasi berbasis web.