cover
Contact Name
Irpan Adiputra pardosi
Contact Email
irpan@mikroskil.ac.id
Phone
+6282251583783
Journal Mail Official
sinkron@polgan.ac.id
Editorial Address
Jl. Veteran No. 194 Pasar VI Manunggal,
Location
Kota medan,
Sumatera utara
INDONESIA
Sinkron : Jurnal dan Penelitian Teknik Informatika
ISSN : 2541044X     EISSN : 25412019     DOI : 10.33395/sinkron.v8i3.12656
Core Subject : Science,
Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial Neural Network 14. Fuzzy Logic 15. Robotic
Articles 80 Documents
Search results for , issue "Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023" : 80 Documents clear
The Sentiment Analysis of BBCA Stock Price on Twitter Data Using LSTM and Genetic Algorithm Optimization Setiawan, Rizki Tri; Setiawan , Erwin Budi
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12825

Abstract

In today's business world, there is significant development and emergence of various and diverse innovations. Therefore, every company needs to develop itself in various ways, one of which is going public. This involves a company selling a percentage of its value to the public in order to facilitate its growth in every aspect required. However, it is not easy for issuers to attract investors to invest their capital because each investor has different criteria in terms of investment unit value. Essentially, the stock price depends on the strengths and weaknesses of the company. Hence, in order to expand the market and manage customer relationships, information is needed as a decision support. One of the sources of information that can be used is Twitter, which includes positive, neutral, and negative opinions. This study employs the LSTM classification method and word embedding using GloVe, followed by Genetic Algorithm optimization, which is used to predict sentiment in tweets related to the BBCA stock. The model is built with classification using Long Short-Term Memory to determine the level of accuracy produced. Then, the word embedding method using GloVe is used, and the obtained results with the GloVe-LSTM method yield an overall accuracy score of 71%. Furthermore, the optimization method using Genetic Algorithm is applied to enhance the previous method, GloVe-LSTM, resulting in an accuracy of 87% with the best individual values of 111,170, 0.398, 93, etc., and the best fitness score of 0.8724.
Comparative Analysis of CNN and CNN-SVM Methods For Classification Types of Human Skin Disease Anggriandi, Dendi; Utami, Ema; Ariatmanto, Dhani
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12831

Abstract

Cancer is one of the leading causes of death worldwide, with skin cancer ranking fifth. The skin, as the outermost organ of the body, is susceptible to various diseases, and accurate diagnosis is crucial for effective treatment. However, limited access to dermatologists and expensive skin biopsies poses challenges in achieving efficient diagnosis. Therefore, it is important to develop a system that can assist in efficiently classifying skin diseases to overcome these limitations. In the field of skin disease classification, Machine Learning and Deep Learning methods, especially Convolutional Neural Network (CNN), have demonstrated high accuracy in medical image classification. CNN's advantage lies in its ability to automatically and deeply extract features from skin images. The combination of CNN and Support Vector Machine (SVM) offers an interesting approach, with CNN used for feature extraction and SVM as the classification algorithm. This research compares two classification methods: CNN with MobileNet architecture and CNN-SVM with various kernel types to classify human skin diseases. The dataset consists of seven classes of skin diseases with a total of 21.000 images. The results of the CNN classification show an accuracy of 93.47%, with high precision, recall, and F1-score, at 93.55%, 93.74%, and 93.62%, respectively. Meanwhile, the CNN-SVM model with "poly," "rbf," "linear," and "sigmoid" kernels exhibits varied performances. Overall, the CNN-SVM model performs lower than the CNN model. The findings offer insights for medical image analysis and skin disease classification research. Researchers can enhance CNN-SVM model performance with varied kernel types and techniques for complex feature representations.
Fingerprint Identification for Attendance Using Euclidean Distance and Manhattan Distance Putra, Adya Zizwan; Yek, Sallyana; Kwok, Shane Christian; Tarigan, Elovani; Sego, William Frans
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12844

Abstract

Attendance is an action to confirm that someone is present at the office, school, or event. The use of attendance in an agency or company is really important as it can improve the level of discipline and productivity. However, the traditional way of doing attendance is considered less effective, less secure, and more difficult to organize. Therefore, a modern attendance system that utilizes fingerprints can be the right solution, especially because every fingerprint is unique. In this research, we focus on designing a fingerprint identification system for attendance purposes by using two distance measure methods, namely Euclidean Distance and Manhattan Distance. The dataset used in the research contains 111 fingerprint images with 90 images for training the designed fingerprint identification system and the remaining 21 images for testing the system. Each fingerprint image has undergone image pre-processing stage before being used. We compare Euclidean Distance and Manhattan Distance based on their performances in identifying fingerprint. From the test results, the fingerprint identification accuracy obtained using Euclidean Distance is 76.19%, while the accuracy obtained using Manhattan Distance is 71.43%. In general, both algorithms succeed in providing the correct identification results. This proves that Euclidean Distance and Manhattan Distance can be utilized for fingerprint identification purposes.
Sentiment Classification of Fuel Price Rise in Economic Aspects Using Lexicon and SVM Method Alfauzan, Muhammad Fikri; Sibaroni, Yuliant; Fitriyani
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12851

Abstract

After being hit by COVID-19 for a long time around the world which resulted in the paralysis of all countries, especially the economic aspects of all countries that dropped dramatically, the world was again shocked by the conflict between Russia and Ukraine which resulted in an increase in world oil prices including in Indonesia, many people complained and opposed the government's policy of increasing fuel prices because fuel affects various aspects, including economic aspects. Based on these problems, researchers use sentiment analysis methods that aim to find out people's opinions on issues that are being discussed throughout Indonesia and this research focuses on comparing the SVM algorithm with TF-IDF feature extraction then using K-Fold Cross Validation after that it is compared with the Lexicon Inset dictionary, in this case the model with Lexicon Inset which contains weighting on each word. In this study, it was found that the dataset model using the SVM algorithm with TF-IDF feature extraction and then using K-Fold Cross Validation obtained an average accuracy of 0.85 using the SVM algorithm. While the model using the automatic labeling dataset using the Indonesian sentiment Lexicon (Lexicon Inset) obtained an average accuracy of 0.68. Classification using SVM with TF-IDF feature extraction is superior to using Lexicon Inset.
Stock Price Correlation Analysis with Twitter Sentiment Analysis Using The CNN-LSTM Method Ibnu Sina, Muhammad Noer; Setiawan, Erwin Budi
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12855

Abstract

The intricate interplay between stock prices, reflecting a company's intrinsic value, and multifaceted factors like economic conditions, corporate performance, and market sentiment, constitutes a vital research domain. Grounded in sentiment analysis, our study deciphers public opinions from vast textual data to gauge sentiment, leveraging Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) models. We focus on Bank Central Asia (BBCA), a prominent Indonesian banking institution, aiming to forecast stock price fluctuations by analyzing sentiment trends extracted from social media, especially Twitter. Meticulous experimentation, encompassing data segmentation, feature extraction, augmentation, and model refinement, yields significant enhancements in prediction accuracy. The CNN-LSTM model's performance improves from 73.41% to a robust 77.75% accuracy, with F1-scores rising from 73.00% to 75.42%. Importantly, strong correlations emerge between sentiment predictions and actual stock price movements, validated by Spearman correlation coefficients. Positive sentiment exhibits a substantial correlation of 0.745 with stock price changes, while negative sentiment exerts notable influence with a correlation coefficient of 0.691. In summary, our study advances the field of sentiment-driven stock price prediction, showcasing deep learning's effectiveness in extracting sentiment from social media narratives. The implications extend to understanding market dynamics and potentially integrating sentiment-aware strategies into financial decision-making. Future research directions could explore model transferability across financial contexts, real-time sentiment data integration, and interpretability techniques for enhanced practicality in sentiment-driven predictions.
Ontology-Based Food Menu Recommender System for Patients with Coronary Heart Disease Najla Nur Adila; Baizal, Z. K. A.
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12858

Abstract

Coronary heart disease is one of the leading causes of death. Knowledge of dietary patterns and proper food selection is an effort to address the risk and support coronary heart disease's healing process. Therefore, this study developed a food menu recommender system as a reference for patients with coronary heart disease. The recommender system is crucial in creating a proper dietary pattern for managing personalized meal plans. The system calculates the required nutritional needs of users. Ontology is used to represent knowledge about nutrition data and food intake. The ontology base with Semantic Web Rule Language (SWRL) enables the system to identify the most suitable foods for patients with coronary heart disease. We use SWRL rules to generate recommendation conclusions based on the existing ontology. Using this language enhances the descriptive logic capabilities, as the rules can overcome the limitations of the ontology language. Therefore, the system is built to find food menu options that match the required nutrition for patients. The nutritionist knowledge will be used to measure the system's performance compared to the recommendations made by nutritionists. From the user data sample, 150 recommended food menu data were obtained. The validation performance results obtained a precision 0.893, recall 1, and F_Score 94.3%.
User Interface Design for Baduy Ecotourism Website Using User Centered Design Method Fhalosa, Muhammad Farhan; Suwawi, Dawam Dwi Jatmiko; Riskiana, Rosa Reska
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12859

Abstract

Baduy is one of the ecotourism destinations which offers captivating natural and cultural attractions, making it a worthy place to visit. The lack of available information in the media has piqued the author's interest in designing a visually appealing website to attract tourists. To address this issue, a user interface design will be created for the Baduy Tribe Ecotourism website using the User Centered Design (UCD) method. This method focuses on users and involves four stages, specifying the context of use, specifying requirements, designing a solution, and evaluating the design. Furthermore, to assess how well users interact with a product, usability testing will be conducted using the System Usability Scale (SUS) and Single Ease Question (SEQ). The usability testing results on the created website interface obtained a SUS score of 81 and generated 3 rating components in the SEQ method, fairly easy, easy, and very easy. Therefore, it can be concluded that the usability score falls within the category of good and is acceptable to users. Through this research, the author hopes that the user interface design for the Baduy Tribe Ecotourism website will meet users' needs, providing them with easy access to valid information and a seamless experience in discovering the natural wonders of the region.
A Prototyping Model for Self-Appraisal Employee Performance Application Development in Cooperative Bagastio, Shobrun Jamil; Anisa, Gia; Suakanto, Sinung; Kusumasari, Tien Fabrianti
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12865

Abstract

Employee performance appraisal which is currently still being implemented cannot yet describe transparency. In addition, the process is still manual, which is far from effective. This study aims to develop a web-based employee performance appraisal application system that can increase the transparency of assessments in microfinance cooperatives. The focus is on using self-appraisal techniques to promote transparency in the appraisal process. Transparent assessments are critical to building trust and fairness during performance evaluations. Using the self-appraisal method, individuals can evaluate their own performance, skills, and achievements in a transparent and unbiased manner. This study investigates the process of making an employee performance appraisal system with the prototyping model method as a development method. The findings of this study contribute to existing knowledge about performance evaluation in microfinance services, particularly in relation to self-appraisal techniques, and offer practical insights for organizations wishing to increase the transparency of appraisals through web-based application systems.
Analysis of User Adoption Levels of JAKI Application Using the Government Adoption Model (GAM) Kirani, Zahra Anadya; Utomo, Rio Guntur; Fathoni, Muhammad Faris
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12868

Abstract

This study delves into an analysis of the adoption patterns within the Jakarta Today e-government application (JAKI) through the dual lenses of the Government Adoption Model (GAM) and the Structural Equation Model (SEM). Encompassing JAKI users aged 17 years and above, the research encapsulates a substantial sample size of 384 individuals. The research findings underscore the pivotal role of key factors in driving e-Government adoption within the context of JAKI. Notably, Perceived Service Response, Perceived Trust, Perceived Uncertainty, Perceived Security, and Privacy collectively wield a significant and affirmative impact on the Adoption of e-Gov. However, intriguingly, factors including Perceived Awareness, Computer-self Efficacy, Availability of Resources, Perceived Ability to Use, Perceived Compatibility, Perceived Functional Benefit, Perceived Image, Perceived Information Quality, and Multilingual Option do not exert a notable influence on the Adoption of e-Gov. These insights proffer invaluable guidance for the Jakarta City Government, facilitating an enhanced understanding of user perceptions and needs. By meticulously addressing the determinative factors that engender a favorable adoption environment, the government stands poised to elevate the efficacy and reach of its e-government service, thus fostering greater citizen engagement and interaction with the JAKI application.
Paraphrase Generation For Reading Comprehension Januarahman, Faishal; Romadhony, Ade
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12873

Abstract

Reading comprehension is an assessment that tests readers understanding of a concept from the given text. The testing process is conducted by providing questions related to the content within the context of the text. The purpose of this research is to create new question variations from existing questions, and one of the methods to achieve this is by paraphrasing questions through the task of paraphrase generation. This can help ensure that readers have fully grasped a concept of a text. This study employs a traditional approach known as the thesaurus-based approach, in which the process involves substituting synonyms using the Indonesian Thesaurus dictionary. The data used consists of a list of Indonesian language reading comprehension assessment questions ranging from elementary to high school levels. To measure the quality of the generated paraphrased questions, two evaluation processes are conducted which are automatic evaluation with the scores ranging from 0-1 and human evaluation with score ranging from 1-4. The automatic evaluation includes the BLEU-4 metric, resulting in a score of 0.044, and the ROUGE-L metric, resulting an F1-score of 0.421. As for human evaluation, the obtained relevancy score is 2.533, and the fluency score is 3.186. The results from both evaluation metrics indicate that the generated paraphrased questions exhibit diverse new word choices but tend to have slightly different meanings compared to the reference questions.

Filter by Year

2023 2023


Filter By Issues
All Issue Vol. 9 No. 4 (2025): Articles Research October 2025 Vol. 9 No. 3 (2025): Article Research July 2025 Vol. 9 No. 2 (2025): Research Articles April 2025 Vol. 9 No. 1 (2025): Research Article, January 2025 Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024 Vol. 8 No. 3 (2024): Research Artikel Volume 8 Issue 3, July 2024 Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024 Vol. 8 No. 1 (2024): Articles Research Volume 8 Issue 1, January 2024 Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023 Vol. 7 No. 3 (2023): Article Research Volume 7 Issue 3, July 2023 Vol. 7 No. 2 (2023): Research Article, Volume 7 Issue 2 April, 2023 Vol. 7 No. 1 (2023): Articles Research Volume 7 Issue 1, 2023 Vol. 6 No. 4 (2022): Article Research: Volume 6 Number 4, October 2022 Vol. 6 No. 3 (2022): Article Research Volume 6 Number 3, July 2022 Vol. 6 No. 2 (2022): Articles Research Volume 6 Issue 2, April 2022 Vol. 6 No. 1 (2021): Article Research Volume 6 Issue 1: January 2021 Vol. 5 No. 2 (2021): Article Research Volume 5 Number 2, April 2021 Vol. 5 No. 2B (2021): Article Research October 2021 Vol 4 No 2 (2020): SinkrOn Volume 4 Number 2, April 2020 Vol. 5 No. 1 (2020): Article Research, October 2020 Vol. 4 No. 1 (2019): SinkrOn Volume 4 Number 1, October 2019 Vol 3 No 2 (2019): SinkrOn Volume 3 Number 2, April 2019 Vol. 3 No. 2 (2019): SinkrOn Volume 3 Number 2, April 2019 Vol. 3 No. 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018 Vol 3 No 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018 Vol. 2 No. 2 (2018): SinkrOn Volume 2 Nomor 2 April 2018 Vol. 2 No. 1 (2017): SinkrOn Volume 2 Nomor 1 Oktober 2017 Vol. 1 No. 2 (2017): SinkrOn Volume 1 Nomor 2 April 2017 Vol. 1 No. 1 (2016): SinkrOn Oktober Volume 1 Edisi 1 Tahun 2016 More Issue