cover
Contact Name
Iswanto
Contact Email
-
Phone
+628995023004
Journal Mail Official
jrc@umy.ac.id
Editorial Address
Kantor LP3M Gedung D Kampus Terpadu UMY Jl. Brawijaya, Kasihan, Bantul, Yogyakarta 55183
Location
Kab. bantul,
Daerah istimewa yogyakarta
INDONESIA
Journal of Robotics and Control (JRC)
ISSN : 27155056     EISSN : 27155072     DOI : https://doi.org/10.18196/jrc
Journal of Robotics and Control (JRC) is an international open-access journal published by Universitas Muhammadiyah Yogyakarta. The journal invites students, researchers, and engineers to contribute to the development of theoretical and practice-oriented theories of Robotics and Control. Its scope includes (but not limited) to the following: Manipulator Robot, Mobile Robot, Flying Robot, Autonomous Robot, Automation Control, Programmable Logic Controller (PLC), SCADA, DCS, Wonderware, Industrial Robot, Robot Controller, Classical Control, Modern Control, Feedback Control, PID Controller, Fuzzy Logic Controller, State Feedback Controller, Neural Network Control, Linear Control, Optimal Control, Nonlinear Control, Robust Control, Adaptive Control, Geometry Control, Visual Control, Tracking Control, Artificial Intelligence, Power Electronic Control System, Grid Control, DC-DC Converter Control, Embedded Intelligence, Network Control System, Automatic Control and etc.
Articles 15 Documents
Search results for , issue "Vol 2, No 4 (2021): July (Forthcoming Issue)" : 15 Documents clear
An hybridization of global-local methods for autonomous mobile robot navigation in partially-known environments Sahloul, Samia; Abid, Donia BEN HALIMA; REKIK, Chokri
Journal of Robotics and Control (JRC) Vol 2, No 4 (2021): July (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.2483

Abstract

This paper deals with the navigation problem of an autonomous non-holonomic mobile robot in partially-known environment. In this proposed method, the entire process of navigation is divided into two phases: an off-line phase on which a distance-optimal reference trajectory enables the mobile robot to move from an initial position to a desired target which is planned using the B-spline method and the Dijkstra algorithm. In the online phase of the navigation process, the mobile robot follows the planned trajectory using a sliding mode controller with the ability of avoiding unexpected obstacles by the use of fuzzy logic controller. Also, the fuzzy logic and fuzzy wall-following controllers are used to accomplish the reactive navigation mission (path tracking and obstacle avoidance) for a comparative purpose. Simulation results prove that the proposed path planning method (B-spline) is simple and effective. Also, they attest that the sliding mode controller track more precisely the reference trajectory than the fuzzy logic controller (in terms of time elapsed to reach the target and stability of two wheels velocity) and this last gives best results than the wall-following controller in the avoidance of unexpected obstacles. Thus, the effectiveness of our proposed approach (B-spline method combined with sliding mode and fuzzy logic controllers) is proved compared to other techniques.
Optimized Harmonic Reduction PWM based Control Technique for Three-Phase quasi Z-Source Inverter Gayen, Pritam Kumar; Sadhukhan, Archak
Journal of Robotics and Control (JRC) Vol 2, No 4 (2021): July (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper proposes an optimized harmonic reduction pulse width modulation (HRPWM) control strategy for three-phase quasi Z-source inverter (qZSI). In traditional sinusoidal or space vector pulse width modulation techniques, the flexibility in adjustment of individual switching angles is not possible and thus, these techniques are not optimum choices for low switching frequency operations of high/medium power qZSI. In the proposed technique, adjustments of switching angles of HRPWM waveform are possible to achieve optimum performance. The optimum performance is targeted as maximization of boosting factor and simultaneous minimization of weighted total harmonic distortion (WTHD) at the output voltage of qZSI. The hybrid particle swarm optimization gravitational search algorithm (PSOGSA) is used for computation of optimum switching angles of suggested HRPWM waveform at various modulation indices. The obtained WTHDs up to 49th order harmonics and boosting factors of optimized HRPWM methodology are compared with that of the maximum boost control (MBC) technique for qZSI to justify superior performances of the suggested method in low switching frequency range. The proposed concept has been verified via simulation study. The experimentation (qZSI controlled by microcontroller) validates the working of optimized HRPWM based qZSI which agrees with software results.
Mixing and controlling the pH of citrate and phosphate with website Syahrul, Syahrul; Komarujaman, Ilham
Journal of Robotics and Control (JRC) Vol 2, No 4 (2021): July (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In this study built an instrument capable of mixing and controlling chemical pH of citrate solution and phosphate solution as buffer solution. The problem often experienced in mixing chemicals is a matter of safety and the accuracy of the concentration of the mixing of the substance. The function of this instrument is to mix and control the pH of the citrate and phosphate solution. It is hoped that in the presence of this instrument, the manufacture of citrate solutions and phosphate solutions can be carried out electronically which does not involve manual calculations to obtain the desired pH of the solution, and is relatively safe from direct contact with chemicals. This instrument is built using a pH sensor as the sensing pH value of the solution to be made. And as a controller used microcontroller. Results of pH control other than can be stored in the database, can also be transmitted to the internet (website) using a wifi interface device. Mixers and pH controls of citrate and phosphate have been realized and resulted in good pH control.
Morse Code Receiver On Invisible Light Using Background Subtraction Method Irawan, Yuda; Wahyuni, Refni; Herianto, Herianto
Journal of Robotics and Control (JRC) Vol 2, No 4 (2021): July (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Morse code is a system of representation of letters, numbers, punctuation marks and signals using a code of dots and lines that are arranged to represent certain characters in the alphabet or certain signals (signs) that are agreed upon for use throughout the world was studied by nilas[1]. This code was coined by Samuel F.B. Morse and Alfred Vail in 1835 was studied by ming[2]. This research aims at how to apply the Background Subtraction method in the design of the morse sign language receiver in the invisible light. Build an Android-based application for recognition of Morse sign language by keeping messages sent using Morse sign language secret through infrared light from the sight of those who can read the message. From the results of the tests that have been carried out, it is concluded that the level of accuracy of testing using the False Match Rate (FMR) obtained a success percentage of 65% from the 26 character data tested. From the 26 character data tested, it was obtained data with the number of characters that were successfully counted correctly, namely 17 characters, while the character data that failed to be counted was 9 characters with a detection result of 26 characters.
RSSI Indoor Outdoor Personal Localization: A Study to Found Targeted Social Engineering Victim by Attacker Via Wireless Methods Firdausi, Ahmad; P. N. Hakim, Galang
Journal of Robotics and Control (JRC) Vol 2, No 4 (2021): July (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Social engineering is a common method to collect more information from victim trough socialization. This method employs human psychology to manipulate other people. In cyber society today, the attacker could use various methods to tapping into victim smartphone, and after that the attacker can get victim persona profiling information. The attacker can select random victim and then using wireless localization methods, the attacker could found its victim. After the random victim has been found the attacker can start social engineering directly to the victim based on persona profiling information, to gain trust and more personal information that can lead inflicting damage to the victim. In this paper, we demonstrate to localize victim using green obaidat calibrate Path loss Propagation models and $4 dollar device based on victim Smartphone RSSI Wi-Fi Signal. With this device we could localize a person within 15 meter with just only 0.64 dbm in difference between our RSSI measurement and simulation.

Page 2 of 2 | Total Record : 15