cover
Contact Name
Yasmina Amalia
Contact Email
yasminaamalia@yahoo.com
Phone
+628562553026
Journal Mail Official
adminjmept@upnyk.ac.id
Editorial Address
Jl. Babarsari No. 2, Tambakbayan, Yogyakarta 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of Metallurgical Engineering and Processing Technology
ISSN : 27236854     EISSN : 27981037     DOI : https://doi.org/10.31315/jmept
Journal of Metallurgical Engineering and Processing Technology diterbitkan oleh Program Studi Teknik Metalurgi, Fakultas Teknologi Mineral, Universitas Pembangunan Nasional "Veteran" Yogyakarta. Journal of Metallurgical Engineering and Processing Technology terbit dua kali dalam satu tahun, yaitu Februari dan Agustus. Fokus dan ruang lingkup Journal of Metallurgical Engineering and Processing Technology adalah Pengolahan Mineral, Batubara, Metalurgi Ekstrasi, Metalurgi Fisika, Metalurgi Mekanik, dan Pengelolaan Mineral
Articles 20 Documents
Search results for , issue "Vol 5, No 1 (August 2024)" : 20 Documents clear
Effect of Application Rate on Gold Ore Extraction Process with Column Test Method at PT J Resources Bolaang Mongondow, North Sulawesi Frederico Espinoza Rangan; Sudaryanto Sudaryanto
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.12385

Abstract

PT J Resouces Bolaang Mongondow is engaged in gold processing with the heap leach process using the dynamic cell method. However, currently there will be a change to the static cell method so that it will affect the operational strategy including the application rate. Therefore, in this research, testwork was carried out to determine the best application rate to be used in the static cell process, studying the effect of application rate on leaching kinetics, percent gold extraction value, and cyanide consumption. The research stages include preparation and testing of head assay samples, leaching, and preparation and testing of tailings samples using the column test method. The application rate variations used were 20 L/m2 /h, a combination of 20 & 10 L/m2 /h, and 10 L/m2 /h. Pregnant leach solution obtained per day is checked for pH, free cyanide, and metal content analysis for the calculation of the percent extraction by back calculated. The results showed that the application rate of 20 L/m2 /h and the combination of 20 & 10 L/m2 /h had faster primary leaching kinetics than the application rate of 10 L/m2 /h. Analysis of the percent extraction of application rate 10 L/m2 /h has the highest percent extraction of 89% (0.2081 mg/L gold). Application rate also has an impact on cyanide consumption, where the application rate of 20 L/m2 /h has the highest cyanide consumption of 0.13 g/t. Meanwhile, the application rate combination of 20 & 10 L/m2 /h and 10 L/m2 /h had cyanide consumption of 0.081 g/t and 0.067 g/t, respectively. From the results, it is concluded that the best application rate is the combination of 20 & 10 L/m2 /h, judging from the leaching kinetics factor and the percent extraction obtained. On the other hand, the volume of solution produced is also less so that it can minimize the occurrence of landslides on the leach pad
Analysis Of Tensile Strenghth Coconut Coir Fiber Composit Using The Vaccum Bagging Method Zaqi Arya Zullfawas Ilhami; Ferry Setiawan; Sehono Sehono
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.10524

Abstract

Abstract The utilization of coconut fiber currently is limited to making brooms or for burning, necessitating further applications. One of these applications is its use as a reinforcement in composites, enhancing utility value and environmental friendliness. This study focuses on crafting composites from coconut fiber with variations in fiber orientation: random, 0°, and 45°.Tensile testing results reveal that the random fiber orientation variation exhibits the best performance, with a stress of 27.30 MPa, attributed to higher density. The 45° fiber orientation variation has the lowest stress (24.23 MPa) due to a lower fiber count. In bending tests, the random fiber orientation variation again performs the best, with a bending stress of 120 MPa, attributed to its high density that strengthens the structure. The 0° fiber orientation has the lowest bending stress (88.59 MPa) due to lower fiber density.Overall, utilizing coconut fiber as reinforcement in composites shows promising positive outcomes, with the random fiber orientation variation providing the best mechanical performance. This endeavor holds the potential to enhance the economic and ecological value of coconut fiber.Keywords: Composite, fiber, coconut, tensile, bending
Analysis of Dye-Penetrant Test, Tensile Test, and Bending Test Results of Shielded Metal Arc Welding (SMAW) on Carbon Steel ASTM A106 Grade B Pipes in 6G Welding Position at PPSDM Migas Cepu Agris Setiawan; Gracella Gracella; Faqih Hoka Padmanaba; Haidar Alfianur Hakim Alfianur Hakim
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.12488

Abstract

The weld quality its significantly depends on the mechanical characteristics of weld joint, the welding process, parameters weld process and also material selection. Insufficient parameter values and welding method can lead to welding defects and distortion that adversely affect mechanical properties. Consequently, carefully selecting appropriate weld method at an optimal level becomes crucial to mitigate defects, enhance productivity, and achieve desirable mechanical attributes in shielded metal arc welding (SMAW). PPSDM Migas has special facilities for conducting welding workshops or training and for equipment inspection or testing in the metallurgy laboratory. One of the inspected items is the welding used to join pipes. In this study, the inspected pipe is Carbon Steel ASTM A106 Grade B, welded using SMAW in the 6G position from the PPSDM Migas Cepu Refinery Unit area. The inspection methods used in this study are the Dye-Penetrant Test, Tensile Test, and Bending Test to identify welding defects and material strength. The tests conducted refer to ASME Section IX. Based on the DyePenetrant Test results on the Carbon Steel ASTM A106 pipe joint, five rounded defects were found on the weld surface, still within the acceptance criteria of ASME Section IX, thus the pipe is declared accepted. According to the Tensile Test results, spesimens 1 and 2 broke in the weld area but met the ASME Section IX criteria with tensile strengths of 464.098 MPa and 713.597 MPa, respectively, both exceeding 415 MPa, which is the tensile strength of ASTM A106 carbon steel. However, the Bending Test results showed open defects up to 3 mm, causing the pipe joint to be declared declined.
Optimization of Acid Wash Process on Activated Carbon with Variation of HCL Concentration at PT XYZ Fahny Ardian; Infantri Putra; Figo S. M. Nasuci; Karla Jeclin Wonua; Janres Yoseva Purba
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.11943

Abstract

The acid wash process is used as a unit operation in the gold adsorption route with the primary objective of removing calcium carbonate, magnesium, and sodium salts from gold-rich carbon surfaces. In general, the use of HCl with an initial concentration of 3% (w/v) and immersion for 1 hour with 1 bed volume of acid can achieve calcium removal of more than 95% from the carbon surface. This research involved reducing the HCl concentration from 3% to varying concentrations between 1%, 1.25%, 1.5%, 1.75%, 2%, 2.25%, 2.5%, and 2.75% with the aim is to optimize the use of HCl and increase economic efficiency in the acid wash process. Analysis of carbon activity data shows that the acid wash process does not have a significant effect on carbon reactivation. The research method involves collecting activated carbon samples in three types, namely Loaded Carbon (LC), Carbon After Wash (CAW), and Barren Carbon (BC). The samples were then analyzed using the Carbon hardness test to evaluate the level of impurities on the carbon surface, as well as the Carbon activity test to measure carbon absorption activity. Data on gold and silver recovery results was also collected from the elution process. The research results show that an HCl concentration of 2% provides optimal effectiveness in acid wash. At this concentration, desorption results were achieved that met the ADR KPI, confirming that acid wash did not significantly affect the gold desorption process. In addition, the acid wash efficiency at a concentration of 2% is close to the baseline value, indicating a good ability to clean carbon from impurities. In the context of this study, acid washing has been proven to be an effective method for cleaning activated carbon for gold adsorption. These findings provide an important contribution to improving the efficiency and quality of the gold absorption process.
A Review of Reforming Processes in the Railway Manufacturing Industry : Case Study of PT. Industri Kereta Api (Persero) Stephanus Yosi Kristanta; Atik Setyani; Sudaryanto Sudaryanto; Muhammad Syukron; Muji Santoso
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.12772

Abstract

The railway manufacturing industry is critical for developing efficient and sustainable mass transportation systems. PT. Industri Kereta Api (Persero) (PT. INKA), a leading company in Indonesia, faces significant challenges due to deformation caused by residual stress during welding processes. This study reviews various reforming techniques implemented by PT. INKA to address these issues. The objectives include evaluating the effectiveness of these techniques and identifying potential improvements. Methods such as post-weld heat treatment (PWHT), controlled cooling, and mechanical tools are analyzed for their ability to mitigate deformation. The study demonstrates that PWHT reduces residual stress and improves material quality by homogenizing the microstructure. Controlled cooling techniques effectively reduce distortion by allowing even temperature distribution during the cooling process. Mechanical tools provide nonthermal methods to stabilize and control deformation, significantly reducing distortion levels. Despite the success of these techniques, PT. INKA faces challenges related to process control and skill variance among workers. The study concludes that while reforming techniques significantly enhance the structural integrity and performance of railway components, consistent implementation and clear guidelines are essential for future improvements. Developing new technologies, enhancing workforce training, and creating comprehensive process guidelines are recommended to maintain high standards and competitiveness in the global market.
Behavior of welded joints on the roof truss of KOJK Office using LISA V.8 FEA Aco Wahyudi Efendi
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.12020

Abstract

Welded joints play a crucial role in the structural integrity of buildings, particularly in supporting heavy loads and resisting various forces such as wind, seismic, and gravitational loads. This research was carried out by identifying the stresses that occur in the welded joints of the truss trusses of the roof of the KOJK Central Java building, with initial analysis conditions of rigid and stiff connections, and second conditions with conditions that occur according to field findings, where the joints are non-standard and there are several holes due to welding. not perfect. Modeling analysis uses Finite Element Analisys software, namely LISA V.8 FEA (License), to obtain the stress behavior that occurs in the roof truss elements of KOJK Central Java. From the results of analysis and modeling by making two conditions, namely the condition of welding joints according to standards and welding joints under field conditions. The stress ratio at the weld joint is 1.351 and the stress ratio at the truss pull rod is 1.054.
Analysis of Primary Coating Thickness Effects on Adhesion Strength in S355J2+N Steel Material Andika Adevicky Irwansyah; Muhammad Syukron; Atik Setyani; Muji Santoso
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.12796

Abstract

Steel is a metal alloy primarily composed of iron, with carbon as its main alloying material along with several other components according to specific requirements. Low carbon steel has a carbon content of 0.05-0.3% and is easily manufacturable. This type of steel is commonly used for vehicle frames and other applications. The material used in this study is Carbon Steel S355J2, classified as low carbon steel with 0.15% carbon and 1.46% manganese. Carbon Steel S355J2 is used for the underframe of freight trains by PT Industri Kereta Api Indonesia. Coating and protection are crucial due to its susceptibility to corrosion, which can damage its structure in operational railway environments. As additional data for the company and learning for the researcher, a pull-off test was conducted varying the thickness of the primer coat. The results showed that sample A (110 µm), B (150 µm), and C (200 µm) achieved adhesion strengths of 2.5 MPa, 4.5 MPa, and 5 MPa respectively. The surface roughness level of the samples was 90 - 120 µm. Based on the test results, the most suitable coating system for the UGL underframe painting project for PT Industri Kereta Api (INKA) is a primer with a thickness of 150 µm (Sample B). This thickness is not too high, yet it significantly exceeds PT INKA's minimum criteria and avoids overcoating.
Beneficiation of Coal from Bonehau, Mamuju Regency of West Sulawesi Province Using Column Flotation Gabriel Wendiarto William; Sufriadin Sufriadin
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.12196

Abstract

Coal is a heterogeneous substance with organic and inorganic and associated with a number of mineral matters that can reduce coal quality. Coal combustion will convert mineral matters into ash content that can affect furnace performance. Coal beneficiation is the process of improving coal quality with a number of methods to reduce ash content and increase coal calorific value. One of the coal beneficiation method is flotation which involves a solid phase in the form of coal particles, a liquid phase in the form of water, and a gas phase in the form of air bubbles as factors that affect the flotation process. This study aims to determine the coal quality, and to analyze the effect variables on ash content and calorific value. The methods used in this study were microscopic optical and X-Ray Diffraction (XRD) analysis for coal mineralogy and proximate analysis and calorific value analysis for coal quality. The column flotation method using flotation time, grain size, and collector dosage as research variables. The results of coal mineralogy analysis showed the coal sample contained of quartz, pyrite, moganite, and graphite with 5.07% of ash and 5,207 cal/g of calorific value. Results of the flotation experiment reveal that the lowest ash content were 2.83% which was found with the grain size of 60 mesh, a flotation time of 10 minutes, and 20 mL of collector dose. The highest calorific value analysis results were 5,835 cal/g which obtained at a grain size of 100 mesh, flotation time of 15 minutes, and a collector dose of 20 mL.
Analysis of Tin Grade and Recovery in Monazite Retreatment with Three Disc Magnetic Separator Lintang Larasati Adi Putri; Dyah Probowati; Yasmina Amalia
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.12900

Abstract

Retreatment is conducted to obtain tin that remains in the monazite tailings (2-3% Sn)  from the processing that has been carried out by PT. Timah. The purpose of this study is to analyse the presence of tin in monazite as well as the effect of magnetic intensity and opening feed on recovery and tin grade by employing a quantitative method of experimentation with three disc magnetic separator. In this study, magnetic intensity was used with disc 1, 2, and 3 respectively is 1.1 T, 1.3 T, 1.5 T (A); 1.3 T, 1.5 T, 1.7 T (B); and 1.5 T, 1.7 T, 1.9 T (C) with opening feed 0.4 cm and 0.8 cm. Based on the experiment, the highest tin grade is 7.33% with the largest combination of magnetic intensity, variation C, and opening feed 0.4 cm. Meanwhile, the highest recovery of 73.64% was obtained at the lowest magnetic intensity, variation A, with the same opening feed. It can be seen that by increasing the magnetic intensity, the tin content will be higher. Meanwhile based on some related experiment, the larger the opening feed, the higher the recovery. However, it should be noted that the opening feed used must not exceed 0.8 cm. If the opening feed used is equal or wider than 0.8 cm, it requires a strong magnetic intensity or the grade and recovery produced will not change significantly.
Analysis Effect of the Nickel Ore Reduction Process on Sulfur Fixation in Reduction Kiln #5 at PT Vale Indonesia Tbk Using Factsage Simulation Untung Sukamto; Aufa Asna Furrie Mutia Rahma
Journal of Metallurgical Engineering and Processing Technology Vol 5, No 1 (August 2024)
Publisher : Universitas Pembangunan Nasional "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/jmept.v5i1.12351

Abstract

The pyrometallurgical process which produces a product in the form of matte nickel is a nickel product that contains high sulfur so it is necessary to carry out a calcination process with the addition of sulfur and coal in the process using a reduction kiln. In order to increase the effectiveness of the process, PT Vale Indonesia Tbk's reduction kiln operations underwent several improvisations regarding the parameters used in the reduction kiln to adapt to the ore and changes to the equipment. This research aims to obtain optimal conditions for the reduction and sulfidation process to produce nickel in a reduction kiln with low fuel consumption. This research stage was carried out by making direct observations in the field as material for assessing actual conditions, then carrying out simulations using Factage software to obtain ideal conditions. Factage simulation results show an optimal calcine composition with 1.95% Ni; 25.86% Fe; 5.03%C; 63.28% Mg2Si2O6; and 3.03% Mg2SiO4 with a good calcine temperature of 717oC and federate at a kiln reduction of 767 DMT and the maximum sulfur fixation value obtained was 1.3 because sulfur and coal were added at the ideal dose, namely 9 kg/t and 35 kg/t.

Page 1 of 2 | Total Record : 20