cover
Contact Name
Andri Agus Rahman
Contact Email
jurnal@rmpi.brin.go.id
Phone
+6282120080815
Journal Mail Official
eksplorium@brin.go.id
Editorial Address
Gd. 720, KST BJ Habibie, Kawasan Puspiptek Serpong, Tangerang Selatan 15314
Location
Kota bandung,
Jawa barat
INDONESIA
Eksplorium : Buletin Pusat Pengembangan Bahan Galian Nuklir
ISSN : 08541418     EISSN : 2503426X     DOI : https://doi.org/10.55981/eksplorium
EKSPLORIUM is published to deliver the results of studies, research and development in the field of nuclear geology. The manuscripts are the result of study, research and development of nuclear geology with scope: geology, exploration, mining, nuclear minerals processing, safety and environment, and development of nuclear technology for the welfare.
Articles 7 Documents
Search results for , issue "Vol. 38 No. 2 (2017): NOVEMBER 2017" : 7 Documents clear
Identifikasi Pola Struktur Geologi Sebagai Pengontrol Sebaran Mineral Radioaktif Berdasarkan Kelurusan Pada Citra Landsat-8 di Mamuju, Sulawesi Barat Indrastomo, Frederikus Dian; Sukadana, I Gde; Suharji
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3874

Abstract

Mamuju area and its surrounding are composed of volcanic rock containing uranium (U) and thorium (Th) elements. Radioelements concentrations in the area reach 1,529 ppm eU and 817 ppm eTh. Radioactive minerals identified in the area are thorianite, davidite, gummite, and autunite. The geological structures were formed by tectonic activities which controlled the creation of volcanic complex and U-Th mineralization in the complex. Identification of geological structure in the field is very difficult due to densely vegetation and higly degree of weathering. The interpreted lineaments from Landsat-8 imagery are the manifestation of geological structures which have controlled the existence of U and Th. Lineaments analysis using Sastratenaya formula is used to obtain the relative age and chronologies of the lineaments. Dose rate measurements in the area show the trend of radioactivitiy anomalies are trending northwest–southeast. The Sastratenaya formula results the formed structures are relatively older and dominantly directing northwest–southeast (N 140o–150o E). Based on the linement interpretation, the dominant direction has similliarity with volcanic and radioactivity distribution. Structures which controlling the volcanic formation and related to U and Th mineralization generally are the northwest–southeast trending structures, which were created along with U and Th mineralization.
UPSTREAM HYDRAULIC INTERCONNECTION STUDY OF GUNUNGKIDUL KARST AREA UNDERGROUND RIVERS Sidauruk, Paston; Satrio; Pujiindiyati, Evarista Ristin; Aliyanta, Barokah
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3715

Abstract

Hydraulic interconnection of Jomblangan (Petung) cave with other caves and water discharges in Gunungkidul karst area has been investigated using tracer techniques and verified by stable isotopes and hydrochemical data interpretation. Many studies have been conducted to study the interconnections of underground rivers around Gunungkidul Karst area, most of them, however, focused on the interconnection of underground rivers around Bribin and Seropan caves. This is because of the development of micro hydro turbines to lift the water from underground river were still focused around Bribin and Seropan caves. Petung, located to the north of Bribin and Seropan caves, was believed to be one of the cave at the upstream of Bribin and Seropan caves, however, there is no evidence yet of the hydraulic interconnection between Petung cave with either Bribin or Seropan caves. The results of tracer technique at the current study, showed that there was no hydraulic interconnection between Petung cave with either Bribin and Seropan caves. On the other hand, the study showed an indication of a direct flow from Petung cave to Sriti and Beton springs. The travel times from Petung to Sriti and Beton springs were found to be around 2 and 10 hours, respectively. This finding is also in agreement with the results of chemical and stable isotopes analysis.
Penentuan Anomali Gayaberat Regional dan Residual Menggunakan Filter Gaussian Daerah Mamuju Sulawesi Barat Karunianto, Adhika Junara; Haryanto, Dwi; Hikmatullah, Fajar; Laesanpura, Agus
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3921

Abstract

Gravity method is a geophysical method that has been frequently used in prospecting mineral resources. The parameter of searched object is based on variations of gravity acceleration measurements on the surface due to variations in sub-surface geological changes. Research area is located in Mamuju Area of West Sulawesi Province where tectonically a complex geological region, which is at a meeting of three large plates, the Pacific plate, the Indo-Australian plate and the Eurasian plate and the smaller Philippine plate. In addition, Mamuju is an area with a high radioactivity dose rate that has potency to radioactive minerals resources. The purpose of the research is to obtain gravity anomalies by using qualitative separation and interpretation of regional and residual gravity anomalies. Complete Bouguer Anomaly (CBA) value of the research area obtained from the measurements was 46.0 – 115.7 mGal. Based on the CBA map, the separation process of regional gravity anomalies and residual using Gaussian filtering technique conducted. This filtering technique works based on spectral analysis of gravity amplitude changes in spatial where the result is a cutoff wave number of 1.1736 x 10-3/meter and a wavelength of 5373.45 m. The regional and residual gravity anomalies range from 51.8 to 102 mGal and -10.4 to 14.8 mGal respectively. The depth of influence of each anomaly is calculated based on their spectral wavelengths, resulting 970.97 m and 100.21 m for regional and residual anomalies respectively. There are five zones based on the residual anomaly map, which are zones A, B, C, D and E. The heaviest positive gravity anomaly is found in zone A and B, which is predicted to be influenced by Adang lava with relative north – south distribution.
Identifikasi Patahan Menggunakan Analisis Data Deformasi Tanah di Tapak RDE Serpong Suntoko, Hadi; Sriyana
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3352

Abstract

Experimental Power Reactor (EPR) site is located in Serpong and it has a distance of ± 67 km from the Cimandiri active fault. Result of EPR site evaluation show that it is feasible and safe from the active fault. However, it is necessary to monitor the rock deformation by using Global Positioning System(GPS) tool. The goal is to obtain precise coordinates through GPS data to identify the presence of active fault activity and its impact on the site. The monitoring is using six measuring points configuration mounted crossing the southeast-northwest suppose fault line direction. The research method is using coordinate data collection from BATAN GPS periodic station and BIG GPS continuous station in radius 25 km. Data processing is using Bernese Version 5.2 Software, proceed radially from station 1 as reference point and then continued by data interpretation. The Analysis result shows that the fault/tectonic condition near EPR site is in the range of 0.05 microstrain which is an area with stable tectonic condition.
Studi Ekstraksi Bijih Thorit dengan Metode Digesti Asam dan Pemisahan Thorium dari Logam Tanah Jarang dengan Metode Oksidasi-Presipitasi Selektif Said, Moch Iqbal Nur; Anggraini, Mutia; Mubarok, Mohammad Zaki; Widana, Kurnia Setiawan
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3930

Abstract

Thorium (Th) is a radioactive metal that can be formed along with uranumand rare earth metals (REM). Minerals contain radioactive elements are monazite ((Ce,La,Y,U/Th)PO4), thorianite ((Th,U)O2), and thorite (ThSiO4). Mamuju Area is containing radioactive minerals, thorite is one of them. To separate REM from radioactive elements can be conducted by exctracting thorium from thorite ore by acid digestion method using sulphuric acid (H2SO4), followed by leaching and thorium recovery in the form of thorium hydroxide by chemical precipitation using ammonium hydroxide (NH4OH). The experimental results showed that the optimum conditions of acid digestion that give the highest Th extraction percentage on solid to liquid ratio are obtained at 1:2 (g/mL) in 60 minutes with extraction percentages of Th, iron (Fe) and REM are 82.47%, 80.08%, and 83.31% respectively. The highest thorium precipitation percentage, as much as 95.47% , was obtained at pH 4.5 on room temperature (26 ± 1°C). At higher temperature (70°C), a lower percentage of thorium precipitation is obtained, as much as 83.69%. Pre-oxidation by using H2O2 solution with two times stoichiometry for 1.5 hours at room temperature is increasing Fe precipitation percentage from 93.08% to 99.93%.
Model Matematik Reduksi Thorium dalam Proses Elektrokoagulasi Prayitno; Ridantami, Vemi
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3566

Abstract

Thorium reduction by electrocoagulation has been conducted on radioactive waste with thorium contaminant grade of 5x10-4Kg/l through a batch system using aluminium electrodes. This study aims to determine a mathematical model of thorium reduction through speed reaction, constante reaction rate and reaction order which are affected by electrocoagulation process parameters like voltage, time, electrode distance, and pH. The research results the optimum voltage condition at 12.5 V at 1 cm electrode spacing, pH 7, and 30 minutes of processing time with 99.6 % efficiency. Prediction on thorium decline rate constante is obtained through mathematic integral method calculation. The research results thorium decline rate is following second order constante with its value at 5x10-3KgL-1min-1.
Studi Pemisahan Thorium dari Besi dan Logam Tanah Jarang dalam Larutan Asam Nitrat dengan Ekstraksi Pelarut Menggunakan Ekstraktan Trioctylphosphine Oxide Briliant Briliant; Mubarok, Mohammad Zaki; Trinopiawan, Kurnia; Prassanti, Riesna
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3924

Abstract

A series of solvent extraction experiment to separate thorium(Th) from iron (Fe) and rare earth metals (REE) using trioctylphosphine oxide (TOPO) conducted with variations of nitric acid concentration, extraction time, ratio between exctractan and diluent (g/mL), and ratio between organic solution and aqueous solution volumes (O/A), and variation of nictric acid concentration in stripping process. Thorium, iron and rare earth metals early concentration in solution feed were measured by using Inductively Coupling Plasma (ICP), Atomic Absorption Spectroscopy (AAS), dan Ultraviolet Visible Spectroscopy (UV-VIS Spectro) respectively. The nitric acid concentration was varied at 1M, 2M, 3M, 4M, and 5M. The extraction time was varied at 2, 5, 10, 15, and 20 minutes, meanwhile the ratio between extractan and diluent (g/mL) was varied at 2:100, 3:100, 4:100, 5:100, and 6:100 with O/A ratio at 1:3, 1:2, 1:1, 2:1, and 3:1. At stripping stage, the nitric acid concentration was varied at 0.1M; 0.2M; 0.3M; 0.4M; and 0.5M. The result of the experiments show that the best condition was obtained on 3M nitric acid concentration, 10 minutes extraction time, 5:100 (g/mL) extractan and diluent ratio, and 1:1 O/A ratio, that resulted in 97.26% Th extraction, 7.97% Fe extraction, and 62.15% rare earth metals extraction with βTh-Fe and βTh-REE value 273.62 and 14.43 respectively. On the stripping experiment, the highest Th stripping percentage obtained as much as 51.37% at 0.3M nitric acid concentration with Fe and REE stripping percentage up to 2.72% and 2.55% respectively.

Page 1 of 1 | Total Record : 7