cover
Contact Name
Andri Agus Rahman
Contact Email
jurnal@brin.go.id
Phone
+6281239910372
Journal Mail Official
ijoa@brin.go.id
Editorial Address
Kawasan Sains dan Teknologi (KST) Bacharuddin Jusuf Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan 15310
Location
Kota bogor,
Jawa barat
INDONESIA
Indonesian Journal of Aerospace
ISSN : -     EISSN : 30320895     DOI : https://doi.org/10.55981/ijoa
Indonesian Journal of Aerospace provides a broad opportunity for the scientific and engineering community to report research results, disseminate knowledge, and exchange ideas in various fields related to aerospace science, technology, and policy. Topics suitable for publication in the IJoA include (but are not limited to) Space science (astrophysics, heliophysics, magnetospheric physics, ionospheric physics, etc.), Aeronautics technology (dynamic, structure, mechanics, avionics, etc.), Space technology (rocket, satellite, payload system, control, etc.), Propulsion and energetic technology (propellant, rocket static-test, thermodynamics of propulsion system, etc.), Aeronautics and space policy, and Application of aerospace science and technology.
Articles 9 Documents
Search results for , issue "Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara" : 9 Documents clear
Front Pages JTD Vol 18 no.1 Juni 2020 Jurnal, Redaksi
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

-
ANALISIS POSISI ANTENA AIS UNTUK MISI PEMANTAUAN KAPAL SATELIT SAR MIKRO LAPAN Dwiyanto, Dwiyanto; Jayani, Ade Putri Septi
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2020.v18.a3153

Abstract

AIS merupakan sistem pengatur lalu lintas kapal dimana sistem ini mengenali dan menentukan lokasi kapal melalui pertukaran data dengan kapal atau stasiun VTS terdekat. Informasi yang berupa identitas kapal, posisi, arah kapal, dan kecepatan dapat ditampilkan dalam layar atau melalui sebuah Electronic Chart Display and Information System (ECDIS). AIS dimaksudkan untuk membantu awak kapal untuk memantau dan memungkinkan otoritas maritim melacak dan memantau pergerakkan kapal. Tren aplikasi penggunaan data AIS saat ini semakin berkembang dengan dipasangnya receiver AIS di satelit. keuntungan pemasangan receiver di satelit adalah mempunyai cakupan wilayah yang luas juga bisa memantau kapal dimana satelit mengorbit. Kombinasi komplemen data AIS dan data SAR dari satelit saat ini semakin menjadi pilihan untuk memantau kejahatan kelautan secara kontinue dan dalam wilayah yang luas seperti Indonesia. Penelitian ini dilakukan untuk menganalisis penempatan antena AIS satelit. Penelitian dilakukan dengan melakukan simulasi antena yang digunakan dan menganalisis Signal to Noise Ratio (SNR) sinyal dari masing masing posisi didapatkan posisi yang optimal. Pertimbangan yang dilakukan untuk menentukan posisi adalah dari luasan dan bentuk coverage AIS serta pertimbangan kemudahan digabungkan dengan data SAR. Hasil simulasi dan perhitungan yang dilakukan penempatan antena pada sumbu Y satelit menjadi pilihan yang optimal untuk digunakan dalam satelit SAR. pada posisi antena ini antena memeiliki coverahe yang lumayan sempit tapi memanjang searah sumbu Y. Pada posisi ini coverage AIS juga sebidang dengan coverage SAR sehingga waktu diterimanya data AIS dari kapal sama dengan saat kapal terdeteksi oleh sapuan SAR.
ANALISA PEMILIHAN BENTUK VORTEX GENERATOR UNTUK SAYAP PESAWAT LSU-05 MENGGUNAKAN METODE NUMERIK Herdiana, Dana; Hartono, Firman
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2020.v18.a3211

Abstract

Telah dilakukan pengujian perdana dari pesawat LSU-05 buatan LAPAN dimana hasil evaluasi pengujian terdapat kekurangan yaitu pada saat pesawat melakukan manuver, hal tersebut diakibatkan oleh beberapa faktor. Salah satu faktor adalah kurangnya koefisien gaya angkat maksimum. Untuk mengatasi hal tersebut maka ada beberapa solusi yang dapat mengatasi hal tersebut. Salah satunya yaitu dengan penambahan komponen pada sayap yaitu vortex generator. Metode yang digunakan untuk penelitian ini adalah metode numerik yaitu mensimulasikan penambahan vortex generator pada sayap dengan berbagai varian bentuk dan posisi pemasangan dari vortex generator menggunakan CFD (Computational Fluid Dynamic). Model yang disimulasikan adalah model sayap saja dan sayap dengan vortex generator. Bentuk yang dipilih untuk vortex generator adalah rectangular, triangular, dan gothic (mod) serta posisi pasang mulai dari 15 %, 20 %, dan 25 % dari panjang chord. Dari hasil yang diperoleh bentuk triangular memiliki nilai CLmax yang lebih besar dibanding bentuk rectangular dan gothic (mod) yaitu 1.4553 dan posisi pasang yang memiliki CLmax yang lebih besar yaitu di posisi pasang 20%. Bentuk vortex generator yang cocok dipasang pada sayap pesawat LSU-05 adalah bentuk triangular di posisi pasang 20%.
KALIBRASI RADIOMETRI VICARIOUS KAMERA MULTISPEKTRAL SATELIT LAPAN-A3/IPB DI WILAYAH BUKIT JADDIH MADURA Salaswati, Sartika; Hakim, Patria Rachman; Syafrudin, A Hadi; Hartono, Rommy; Utama, Satriya; Herawan, Agus; Yatim, Rakhmat; Ardinal, Rifki; Pamadi, Bambang Sigit
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2020.v18.a3212

Abstract

Satelit LAPAN-A3/IPB merupakan satelit mikro eksperimental yang memiliki misi penginderaan jauh sebagai salah satu misi utamanya. Dalam melaksanakan misi penginderaan jauh tersebut, satelit LAPAN-A3/IPB dilengkapi dengan muatan utama berupa kamera multispektral empat kanal (merah-hijau-biru-inframerah dekat) jenis pencitraan pushbroom dengan resolusi spasial 15 meter dan lebar sapuan 120 km serta resolusi radiometri 16 bit dan resolusi temporal 21 hari. Untuk menghasilkan data citra pengamatan yang memiliki kualitas standar setiap saat, salah satu kalibrasi yang harus dilakukan adalah kalibrasi radiometri vicarious yang dilakukan setelah satelit mengorbit. Penelitian ini menganalisis hasil kalibrasi radiometri vicarious untuk kamera multispektral satelit LAPAN-A3/IPB di wilayah bukit Jaddih Madura yang telah dilakukan pada tahun 2018 lalu. Dengan membandingkan data citra observasi yang dihasilkan satelit dan data radiansi hasil pengukuran lapangan dengan menggunakan spektrometer, diperoleh koefisien radiansi yang menyatakan hubungan antara data digital number citra kamera multispektral dengan data radiansi sensor ToA (Top-of-Atmosphere). Analisis yang telah dilakukan menunjukkan bahwa koefisien radiansi yang dihasilkan kalibrasi radiometri vicarious di bukit Jaddih Madura tidak berbeda jauh dengan koefisien radiansi yang dihasilkan pada beberapa kalibrasi radiometri vicarious sebelumnya. Analisis temporal juga menunjukkan bahwa koefisien radiansi yang dihasilkan dengan menggunakan data observasi bukit Jaddih pada periode waktu lainnya juga menghasilkan nilai koefisien radiansi yang sama. Hasil ini menunjukkan bahwa hasil kalibrasi radiometri vicarious yang dihasilkan cukup akurat. Walaupun demikian, akurasi kalibrasi radiometri vicarious yang dilakukan dapat ditingkatkan dengan menggunakan data atmosfer yang dihasilkan sensor sunfotometer.
PERHITUNGAN FAILURE INDEX STRUKTUR SAYAP PESAWAT TERBANG TANPA AWAK Ai-X1 DENGAN MENGGUNAKAN KRITERIA TSAI-HILL DISIMULASIKAN DENGAN METODE ELEMEN HINGGA Iryani, Lenny; Wibowo, Singgih Satrio
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2020.v18.a3228

Abstract

Untuk mengetahui kekuatan struktur suatu pesawat terbang, dilakukan perhitungan dan analisis kekuatan struktur. Struktur sayap pesawat terbang yang disusun dari material komposit, penghitungan dan analisis kekuatan struktur salah satunya dilakukan dengan menghitung failure index untuk masing-masing layer/susunan dari material komposit tersebut. Pada penelitian ini, struktur sayap Pesawat terbang tanpa awak (PTTA) Ai-X1 yang terbuat dari material komposit dianalisis kekuatan strukturnya dengan menghitung failure index dari masing-masing layer/susunan material komposit tersebut. Perhitungan failure index dilakukan dengan menggunakan kriteria kegagalan Tsai-Hill. Hasil dari penelitian ini yaitu nilai failure index pada masing-masing layer/susunan material komposit struktur sayap pesawat Ai-X1. Berdasarkan kriteria Tsai-Hill masing-masing layer/susunan tersebut menunjukkan tidak adanya keretakan pada lamina.
CHARACTERIZATION OF SIZE AND SHAPE OF AMMONIUM PERCHLORATE PARTICLE FROM CHINA, SOUTH KOREA, AND INDONESIA AND THEIR INFLUENCES ON PROPERTIES OF PROPELLANT Hutauruk, Jones; Bura, Romie Oktovianus; Wibowo, Heri Budi
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2020.v18.a3346

Abstract

The aim of this study is to obtain characteristics of ammonium perchlorate particle that used in Rocket Technology Center (LAPAN). Characterization begin from the determination of particle size distribution with Particle Size Analyzer. The SEM is used to obtain information about the morphology of AP, furthermore, the results are reprocessed using ImageJ software to analyze the shape of AP particle, and the Surface area was obtained by using BET. Characteristic of AP such as particle size, shape, and surface area are important parameters because those are directly related to propellant combustion energy. Ammonium perchlorate was procured from China, South Korea, and Indonesia with a particle size of 200µm From this study, the particle size of APC200, APH200 and API200 was obtained, which are 265 µm, 236 µm, and 242 µm, with particle shape aggregate value of 0,68, 0,38 and 0,33, roundness of 0,57, 0,79,0,63, and surface area of 1,104 m2/g, 5,561 m2/g, and 2,972 m2/g.
Roll Amplification of Solid Rocket Motor in LAPAN Sounding Rocket Sudiana, O.; Teofilatto, P.
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2020.v18.a3351

Abstract

Sounding rockets have been used for scientific research and implemented in meteorological and upper atmosphere studies since the late 1950s. Sounding rockets are sub-orbital carriers that follow a parabolic trajectory from launch to landing. Supporting the roadmap of Satellite Launch Vehicle development, LAPAN had launch The Sounding Rocket Program.A sensitive amplification from the production of an unpredicted roll rate was detected during the boost of the sounding rocket, despite of the tail wings in cruciform configuration at last flight test. One of this phenomenon can be influenced by the flow field of the combustion chamber during boosting time.The basic idea of this research is to model the roll amplification effect as a swirling motion of portion of exhaust gas that participate to the rotation dynamics of the rocket rather than to exit immediately flow the combustion chamber. Available flight data where is obtained from last flight test presented. It is shown the presence of a significant roll amplification when solid rocket motor is used during burning time. The result has a good agreement to presence of a portion of exhaust gas influence an unpredicted roll amplification.
INCREASING DATA TELEMETRI SOUNDING ROCKET LAPAN WITH PULSE CODE MODULATION METHODE Arisandi , Effendi Dodi
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2020.v18.a3353

Abstract

The telemetry data of the sounding rocket when flight in the space is very important to known. This data will be used for next mission or evaluation the last rocket flight. Commonly the data of the sensor in the sounding rocket are accelerometer, gyroscope, magnetometer, GPS and so on. As much data as possible than can be sent to the ground control system when the rocket flies. The problem is when the baud rate is low so not much data can be transmitted. Another problem is when the using serial bit standard communication such as the baud rate is 115.200 which mean that the maximum data in one second is 14,400 characters. It is less than when using the PCM bit rate. Application of PCM in the telemetry for sounding rocket LAPAN is new and need development to reach the optimal. With the PCM method the communication data can transmit around 1.25Mbps or 156,250 characters based on the TR FM02-S-2 full S-band transmitter. In this research, focus to the implementation the PCM method on the FPGA for sending and receiving the data via cable. Two FPGA boards can work together for sending and receiving data with PCM method with the total bit is 1.25Mbps.
Full Pages JTD Vol 18 No.1 Juni 2020 Jurnal, Redaksi
Indonesian Journal of Aerospace Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

-

Page 1 of 1 | Total Record : 9


Filter by Year

2020 2020


Filter By Issues
All Issue Vol. 23 No. 1 (2025): Indonesian Journal Of Aerospace Vol. 22 No. 2 (2024): Indonesian Journal Of Aerospace Vol. 22 No. 1 (2024): Indonesian Journal Of Aerospace Vol. 21 No. 2 (2023): Indonesian Journal Of Aerospace Vol. 21 No. 1 (2023): Indonesian Journal of Aerospace Vol. 20 No. 2 (2022): Jurnal Teknologi Dirgantara Vol. 20 No. 1 (2022): Jurnal Teknologi Dirgantara Vol. 19 No. 2 (2021) Vol. 19 No. 1 (2021) Vol. 18 No. 2 Desember (2020): Jurnal Teknologi Dirgantara Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara Vol. 17 No. 2 Desember (2019): Jurnal Teknologi Dirgantara Vol. 17 No. 1 Juni (2019): Jurnal Teknologi Dirgantara Vol. 16 No. 2 Desember (2018): Jurnal Teknologi Dirgantara Vol. 16 No. 1 Juni (2018): Jurnal Teknologi Dirgantara Vol. 15 No. 2 Desember (2017): Jurnal Teknologi Dirgantara Vol. 15 No. 1 Juni (2017): Jurnal Teknologi Dirgantara Vol. 14 No. 2 Desember (2016): Jurnal Teknologi Dirgantara Vol. 14 No. 1 Juni (2016): Jurnal Teknologi Dirgantara Vol. 13 No. 2 Desember (2015): Jurnal Teknologi Dirgantara Vol. 13 No. 1 Juni (2015): Jurnal Teknologi Dirgantara Vol. 12 No. 2 Desember (2014): Jurnal Teknologi Dirgantara Vol. 12 No. 1 Juni (2014): Jurnal Teknologi Dirgantara Vol. 11 No. 2 Desember (2013): Jurnal Teknologi Dirgantara Vol. 11 No. 1 Juni (2013): Jurnal Teknologi Dirgantara Vol. 10 No. 2 Desember (2012): Jurnal Teknologi Dirgantara Vol. 10 No. 1 Juni (2012): Jurnal Teknologi Dirgantara Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara Vol. 9 No. 1 Juni (2011): Jurnal Teknologi Dirgantara Vol. 8 No. 2 Desember (2010): Jurnal Teknologi Dirgantara Vol. 8 No. 1 Juni (2010): Jurnal Teknologi Dirgantara Vol. 7 No. 2 (2009): Jurnal Teknologi Dirgantara Vol. 7 No. 1 Juni (2009): Jurnal Teknologi Dirgantara Vol. 6 No. 2 (2008): Jurnal Teknologi Dirgantara Vol. 6 No. 1 (2008): Jurnal Teknologi Dirgantara Vol. 5 No. 1 (2007): Vol 5, No.1 Juni (2007) Vol. 5 No. 2 (2007): Jurnal Teknologi Dirgantara Vol. 4 No. 2 (2006): Jurnal Teknologi Dirgantara Vol. 4 No. 1 (2006): Jurnal Teknologi Dirgantara Vol. 3 No. 2 (2005): Jurnal Teknologi Dirgantara Vol. 2 No. 2 (2004): Jurnal Teknologi Dirgantara Vol. 2 No. 1 (2004): Jurnal Teknologi Dirgantara Vol. 1 No. 2 Desember (2003): Jurnal Teknologi Dirgantara Vol. 1 No. 1 (2003): Jurnal Teknologi Dirgantara More Issue