cover
Contact Name
Andri Agus Rahman
Contact Email
jurnal@brin.go.id
Phone
+6281239910372
Journal Mail Official
ijoa@brin.go.id
Editorial Address
Kawasan Sains dan Teknologi (KST) Bacharuddin Jusuf Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan 15310
Location
Kota bogor,
Jawa barat
INDONESIA
Indonesian Journal of Aerospace
ISSN : -     EISSN : 30320895     DOI : https://doi.org/10.55981/ijoa
Indonesian Journal of Aerospace provides a broad opportunity for the scientific and engineering community to report research results, disseminate knowledge, and exchange ideas in various fields related to aerospace science, technology, and policy. Topics suitable for publication in the IJoA include (but are not limited to) Space science (astrophysics, heliophysics, magnetospheric physics, ionospheric physics, etc.), Aeronautics technology (dynamic, structure, mechanics, avionics, etc.), Space technology (rocket, satellite, payload system, control, etc.), Propulsion and energetic technology (propellant, rocket static-test, thermodynamics of propulsion system, etc.), Aeronautics and space policy, and Application of aerospace science and technology.
Articles 8 Documents
Search results for , issue "Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara" : 8 Documents clear
SIMULASI KINERJA FORWARD ERROR CONTROL CODING UNTUK SATELIT MIKRO PENGINDERAAN JARAK JAUH Dwiyanto; Sugihartono
Indonesian Journal of Aerospace Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Micro satellite application for remote sensing in this time has been expanded and particularly supported by growth of electronics component that low power and small size. Large amount of image data, less of contact time and limited satellite’s power obliges of efficiency mechanism design to assured data satellite communication is accepted properly by earth station. Various of scenario of data transmissions on micro satellite have been developed in order to ensure all data that taken by payload can be delivered and accepted by station earth truly. Forward Error Control Coding or Forward Error Correction method is mechanism that added redundancy bit to delivery data with a purpose to improve error correction of received data. FEC performance can be known by compare of different value of Eb/N0 needed for Bit Error Rate (BER) in common without FEC. In this research conducted simulation performance FEC Reed Solomon by undertaking change of beet amount per symbol, code length and code ability in repairing symbol error. Simulation Result shows getting smaller code rate that used then ever greater code reinforcement. The simulation using forward error control coding Reed Solomon for data transmission remote sensing results code RS(255,223) have best performance with coderate 0,874 and coding gain 3,4dB on value of BER 10-4.
PEMBUATAN DAN ANALISIS KINERJA SISTEM THERMAL INSULATION PADA MOTOR ROKET YANG MENGGUNAKAN PROPELAN CASE-BONDED Sutrisno
Indonesian Journal of Aerospace Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Liner material of case-bonded propellant rocket motor have been made by adding some filler to the liner material composition used in free standing rocket motor. The liner was manufactured by spinning method to the rocket motor tube. The case-bonded liner performance in radial burning rocket motor was analyzed using material characteristic test result combined with rocket motor burning mechanism and free standing rocket motor static test result. The case-bonded liner materials are superior to the free standing liner because it is lighter (18,94%) and have higher heat resistance (6,75%). The application of case-bonded liner for radial burning rocket motor using single configuration propellant will be safe because the heat of propellant combustion passed through the isolator materials beforethe rocket motor tube. Based on the analysis it is found that the case-bonded liner can be recommended to the radial burning rocket motor using single configuration propellant.
PERHITUNGAN DAN PERANCANGAN IGNITER BERBASIS KALKULASI PROPULSI ROKET (Studi Kasus Roket RX-320) Samosir, Ganda
Indonesian Journal of Aerospace Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The solid rocket motors, like all the LAPAN’s rocket, has been using the composite fuel of Hydroxyl Terminated Poly Butadiene (HTPB) type which is not easy to self-igniting. The quite extreme environment conditions are needed in order to ignite this non-hypergolic solid fuel, such as the ambiance pressure and temperature must be about 40 bar and 280°C respectively. The aforementioned conditions must be well given by the prime igniter designed or commonly known as igniter. The performance of an igniter could be very influenced by 2 (two) massive variables; first one is the internal factor, such as: squib ingredient, filament material, primer composition, igniter main charge, and the second one is external factor, such as: propellant’s type, dimension and the configuration of the rocket’s combustion chamber. In other word, chosen the proper rocket’s igniter are depending on the type and its mission.The propulsion calculation applied in this paper to design the igniter of the rocket RX-320, gives some major variables, i.e.: the biggest tube length; = 357 mm, its outside diameter; = 51 mm, total orifices and its diameter are 165 and 4 mm respectively.
PERHITUNGAN DAN ANALISIS LOSSES, DIAMETER EFEKTIF ROTOR, DAN PENYERAPAN DAYA DAN ENERGI PADA DIFFUSER AUGMENTED WIND TURBINE (DAWT) Atmadi, Sulistyo; Fitroh, Ahmad Jamaludin
Indonesian Journal of Aerospace Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The use of diffuser in wind turbine (DAWT) is aimed at increasing the effective speed to produce a higher power. A bigger and heavier turbine results in difficulty in manufacturing the turbine orientation system. This research consists of three parts i.e. the calculation and analysis of the losses, determination of the effective diameter of the rotor, and the calculation and analysis of the absorbed energy by DAWT. The losses calculation and analysis is based on the friction between the airflow and wall. The diameter of the rotor is choosen in the diffuser area which has minimum turbulence flow produced by the wind angle. The calculation and analysis of the power is based on its rotor diameter. Then the power converted to become energy. In this research, DAWT is assumed to have no orientation system so that easily manufactured, i.e. the rotor is oriented at a single direction. Wind direction and frequency is selected in three configurations. In the first configuration, the wind direction comes from all the twelve wind source direction with the same frequency in the 24 hour period, producing 2 hourly periods for every wind direction. In the second configuration, wind from 90° and 270° or perpendicular to the axial turbine axes are eliminated, and hence producing 10 different wind directions at 2.4 hourly periods. In the third configuration, the turbine is set at the beach whereby the wind direction comes only at two direction; the sea and land wind directions. At these conditions, the wind is assumed to come at 0°, 30°, 150°, 180°, 210°, and 330°. The aim of this research is to calculate the energy absorption of the wind rotor, and comparing with those produced without the diffuser system in place. In this research, a 2m rotor diameter and 4m diffuser diameter is selected, power coefficient of 0.3, wind speed of 5m/sec, and these parameters are constant for the 24 period under analysis. The result of the calculation shows that there are losses near wall especially for high wind angle. The rotor diameter have chossen about 1,940 m. The energy absorption of the wind rotor without the diffuser is 6.231 kJ. The energy absorption values for the 1st, 2nd and 3rd configuration with the diffuser produce 54.361, 65.234, and 101.316 kJ respectively. It shows that the use of diffuser in the wind rotor could produce an increase of up to 9 to 16 times in the power absorption of the rotor.
KRISTALISASI AMMONIUM PERKLORAT (AP) DENGAN SISTEM PENDINGINAN TERKONTROL UNTUK MENGHASILKAN KRISTAL BERBENTUK BULAT Pinalia, Anita
Indonesian Journal of Aerospace Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AP is the solid particles with the largest composition in compossite propellant, with fractions 60-80%. Rounded particles of AP indirectly gives better performance of propellant. Therefore we need experiment the crystallization process to produce rounded AP crystal. In this experiment, crystallization was conducted by using a controlled cooling system. Cooling is done through two stages and using a different coolant. The first stage of slow cooling using water (30°C), and continued rapid cooling with ethylene glycol (-27°C). These experiment generate 45.45 kg AP with a purity 99.67%, 40 mesh crystal size, crystal shape close to round, yield 39.71%.
ANALISIS LINTAS TERBANG ROKET MULTI-STAGE RKN200 Sasongko, Rianto. A; Jenie, Yazdi. I; Poetro, Ridanto. E
Indonesian Journal of Aerospace Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper deals with a trajectory analysis of RKN200 multi-stage rocket system. The implementation of a multi-stage configuration means that a separation process has to be taken within the flight phase. The separation process is basically a transition process from a phase with booster as initial/launch propulsion to that with sustainer as the propulsion for the rest of flight time. RKN200 is a multi-stage rocket developed by LAPAN Indonesia for defence applications. In a multi-stage rocket development process, stage separation becomes a critical phase which should be considered carefully, since this phase will significantly affect the entire flight performance of the rocket. In this paper, the trajectory of RKN200 is analyzed in various cases with separation process included. The separation stage is modeled as a discrete process, i.e. by applying a sudden change on the rocket parameters values at the time of separation. In addition to that, impulsive force and moment which occur as a result of the separation ignition will also introduced into the mathematical model of the rocket dynamics, such that their influence to the rocket flight variables can be counted and computed . The modeling, simulation, and analysis of the flight trajectory are conducted using a simulation software already developed for rocket dynamic and performance analysis. Some simulation results are presented and analyzed to evaluate the RKN200 flight trajectory in some flight settings and conditions, and also to observe the effect of stage separation process on the rocket flight.
PENGARUH PENAMBAHAN GLOVE DAN PENGURANGAN YEHUDI SERTA PERGESERAN LOKASI APEX TERHADAP KARAKTERISTIK AERODINAMIKA SAYAP PESAWAT TERBANG Sudira, I G.N
Indonesian Journal of Aerospace Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Success indicator in airplane design process is depended on success or not in wing design process. Wing design process was supported by many design variable and the final result was compromise one from many scientific science or specialist. The first step in airplane wing design after design requirement & objective (DR&O) was defined, is determining wing planform through parametric study. Parametric study was conducted to make sure that all design parameters have been considered especially for aerodynamic and structural aspect. This paper discuses the influence of glove and yehudi changes and also apex location movement with respect to aerodynamic characteristic of the wing. Additional of the glove was intended to compensate yehudi existent due to structural aspect mainly for landing gear placement. Disadvantage of aerodynamics aspect due to yehudi existent is expected will be overcome by additional of glove. Apex location is also important parameter to control the shape of pressure coeffient of wing profile. Apex location can be moved according to sensitivity of designer to achieve design target. For the whole, it can be said that glove and yehudi and also apex location can be isolated its influence to major variable design namely to wing profile pressure distribution. The computer program used in this analysis is integration of the program for wing geometry generation, paneling process and computational fluid dynamic code (CFD), in this case VSAERO, and by author it is called NWDU.
RANCANG BANGUN MODEL WAHANA HOVERWING XHW-1 Mulyanto, Taufiq; Baruna, Digit Mitra
Indonesian Journal of Aerospace Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Hoverwing craft is a combination of hovercraft and WiSE-craft. Hoverwing craft operation has transition phase from air cushion lift to aerodynammic lift, and vice versa. A Hovering model, named XHW-1, was designed and built to understand further the design problem related to this kind of vehicle and to observe the transition phase. To simplify construction, manufacture and testing, but without reducing the uniqueness of the vehicle, the model was designed to be operated on a flat surface. The design considered hovercraft related aspect and aircraft aspect as well. The configuration chosen was monohull. The model weight 755 gr, has 1.2 m wing span, and 20 x 30 cm air cushion. Preliminary test showed that air cushion could function properly and that model could reach 3 m/s forward speed.

Page 1 of 1 | Total Record : 8


Filter by Year

2011 2011


Filter By Issues
All Issue Vol. 23 No. 1 (2025): Indonesian Journal Of Aerospace Vol. 22 No. 2 (2024): Indonesian Journal Of Aerospace Vol. 22 No. 1 (2024): Indonesian Journal Of Aerospace Vol. 21 No. 2 (2023): Indonesian Journal Of Aerospace Vol. 21 No. 1 (2023): Indonesian Journal of Aerospace Vol. 20 No. 2 (2022): Jurnal Teknologi Dirgantara Vol. 20 No. 1 (2022): Jurnal Teknologi Dirgantara Vol. 19 No. 2 (2021) Vol. 19 No. 1 (2021) Vol. 18 No. 2 Desember (2020): Jurnal Teknologi Dirgantara Vol. 18 No. 1 Juni (2020): Jurnal Teknologi Dirgantara Vol. 17 No. 2 Desember (2019): Jurnal Teknologi Dirgantara Vol. 17 No. 1 Juni (2019): Jurnal Teknologi Dirgantara Vol. 16 No. 2 Desember (2018): Jurnal Teknologi Dirgantara Vol. 16 No. 1 Juni (2018): Jurnal Teknologi Dirgantara Vol. 15 No. 2 Desember (2017): Jurnal Teknologi Dirgantara Vol. 15 No. 1 Juni (2017): Jurnal Teknologi Dirgantara Vol. 14 No. 2 Desember (2016): Jurnal Teknologi Dirgantara Vol. 14 No. 1 Juni (2016): Jurnal Teknologi Dirgantara Vol. 13 No. 2 Desember (2015): Jurnal Teknologi Dirgantara Vol. 13 No. 1 Juni (2015): Jurnal Teknologi Dirgantara Vol. 12 No. 2 Desember (2014): Jurnal Teknologi Dirgantara Vol. 12 No. 1 Juni (2014): Jurnal Teknologi Dirgantara Vol. 11 No. 2 Desember (2013): Jurnal Teknologi Dirgantara Vol. 11 No. 1 Juni (2013): Jurnal Teknologi Dirgantara Vol. 10 No. 2 Desember (2012): Jurnal Teknologi Dirgantara Vol. 10 No. 1 Juni (2012): Jurnal Teknologi Dirgantara Vol. 9 No. 2 Desember (2011): Jurnal Teknologi Dirgantara Vol. 9 No. 1 Juni (2011): Jurnal Teknologi Dirgantara Vol. 8 No. 2 Desember (2010): Jurnal Teknologi Dirgantara Vol. 8 No. 1 Juni (2010): Jurnal Teknologi Dirgantara Vol. 7 No. 2 (2009): Jurnal Teknologi Dirgantara Vol. 7 No. 1 Juni (2009): Jurnal Teknologi Dirgantara Vol. 6 No. 2 (2008): Jurnal Teknologi Dirgantara Vol. 6 No. 1 (2008): Jurnal Teknologi Dirgantara Vol. 5 No. 1 (2007): Vol 5, No.1 Juni (2007) Vol. 5 No. 2 (2007): Jurnal Teknologi Dirgantara Vol. 4 No. 2 (2006): Jurnal Teknologi Dirgantara Vol. 4 No. 1 (2006): Jurnal Teknologi Dirgantara Vol. 3 No. 2 (2005): Jurnal Teknologi Dirgantara Vol. 2 No. 2 (2004): Jurnal Teknologi Dirgantara Vol. 2 No. 1 (2004): Jurnal Teknologi Dirgantara Vol. 1 No. 2 Desember (2003): Jurnal Teknologi Dirgantara Vol. 1 No. 1 (2003): Jurnal Teknologi Dirgantara More Issue