cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
Department of Statistic, Faculty of Science and Mathematics , Universitas Diponegoro Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro Gedung F lt.3 Tembalang Semarang 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Gaussian
Published by Universitas Diponegoro
ISSN : -     EISSN : 23392541     DOI : -
Core Subject : Education,
Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM UNDIP.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 10, No 4 (2021): Jurnal Gaussian" : 15 Documents clear
ANALISIS KECENDERUNGAN LAPORAN MASYARAKAT PADA “LAPORGUB..!” PROVINSI JAWA TENGAH MENGGUNAKAN TEXT MINING DENGAN FUZZY C-MEANS CLUSTERING Ratna Kurniasari; Rukun Santoso; Alan Prahutama
Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i4.33101

Abstract

Effective communication between the government and society is essential to achieve good governance. The government makes an effort to provide a means of public complaints through an online aspiration and complaint service called “LaporGub..!”. To group incoming reports easier, the topic of the report is searched by using clustering. Text Mining is used to convert text data into numeric data so that it can be processed further. Clustering is classified as soft clustering (fuzzy) and hard clustering. Hard clustering will divide data into clusters strictly without any overlapping membership with other clusters. Soft clustering can enter data into several clusters with a certain degree of membership value. Different membership values make fuzzy grouping have more natural results than hard clustering because objects at the boundary between several classes are not forced to fully fit into one class but each object is assigned a degree of membership. Fuzzy c-means has an advantage in terms of having a more precise placement of the cluster center compared to other cluster methods, by improving the cluster center repeatedly. The formation of the best number of clusters is seen based on the maximum silhouette coefficient. Wordcloud is used to determine the dominant topic in each cluster. Word cloud is a form of text data visualization. The results show that the maximum silhouette coefficient value for fuzzy c-means clustering is shown by the three clusters. The first cluster produces a word cloud regarding road conditions as many as 449 reports, the second cluster produces a word cloud regarding covid assistance as many as 964 reports, and the third cluster produces a word cloud regarding farmers fertilizers as many as 176 reports. The topic of the report regarding covid assistance is the cluster with the most number of members. 
KLASIFIKASI REGRESI LOGISTIK MULTINOMIAL DAN FUZZY K-NEAREST NEIGHBOR (FK-NN) DALAM PEMILIHAN METODE KONTRASEPSI DI KECAMATAN BULAKAMBA, KABUPATEN BREBES, JAWA TENGAH Rismia, Erysta Risky; Widiharih, Tatik; Santoso, Rukun
Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i4.33095

Abstract

The characteristics of society in choosing contraceptive methods are also the crucial factors for the government to prepare the family planning services needed at Bulakamba District, Brebes Regency, Central Java. In this case, a classification process needs to be done to assist the process of classifying the characteristics of society in the selection of contraceptive methods. Multinomial Logistic Regression classification is good in exploring data information  meanwhile Fuzzy K Nearest Neighbor (FK-NN) classification is good for handling big data and noise. These two methods used in this study because they are relevant to the data applied and will be compared their classification accuracy through APER and Press's Q calculations.The classification accuracy results obtained based on the APER calculation for Multinomial Logistic Regression is 88,25% and Fuzzy K Nearest Neighbor (FK-NN) is 88,92%.  Meanwhile, the Press's Q value of both methods are 9600,945 and 9518,014 greater than χ 2𝛼,1 which is 3,841, so that it is statistically accurate. Based on the results obtained, it can be concluded that Multinomial Logistic Regression classification method has a better classification accuracy than Fuzzy K Nearest Neighbor (FK-NN) method. 
PENERAPAN GRADIENT BOOSTING DENGAN HYPEROPT UNTUK MEMPREDIKSI KEBERHASILAN TELEMARKETING BANK Silvia Elsa Suryana; Budi Warsito; Suparti Suparti
Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i4.31335

Abstract

Telemarketing is another form of marketing which is conducted via telephone. Bank can use telemarketing to offer its products such as term deposit. One of the most important strategy to the success of telemarketing is opting the potential customer to create effective telemarketing. Predicting the success of telemarketing can use machine learning. Gradient boosting is machine learning method with advanced decision tree. Gardient boosting involves many classification trees which are continually upgraded from previous tree. The optimal classification result cannot be separated from the role of the optimal hyperparameter.  Hyperopt is Python library that can be used to tune hyperparameter effectively because it uses Bayesian optimization. Hyperopt uses hyperparameter prior distribution to find optimal hyperparameter. Data in this study including 20 independent variables and binary dependent variable which has ‘yes’ and ‘no’ classes. The study showed that gradient boosting reached classification accuracy up to 90,39%, precision 94,91%, and AUC 0,939. These values describe gradient boosting method is able to predict both classes ‘yes’ and ‘no’ relatively accurate.
PEMODELAN DAN PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) MENGGUNAKAN ARIMAX-TARCH Endah Fauziyah; Dwi Ispriyanti; Tarno Tarno
Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i4.33102

Abstract

The Composite Stock Price Index (IHSG) is a value that describes the combined performance of all shares listed on the Indonesia Stock Exchange. JCI serves as a benchmark for investors in investing. The method used to predict future conditions based on past data is forecasting . Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) is amodel time series that can be used for forecasting. Financial data has high volatility which causes the variance of the residual model which is not constant (heteroscedasticity). ARCH / GARCH model is used to solve the heteroscedasticity problem in the model. If the data is heteroscedastic and asymmetric, then the model can be used Threshold Autoregressive Conditional Heteroskedasticity (TARCH). The data used are the Composite Stock Price Index (IHSG) for the January 2000 - April 2020 period and the dollar exchange rate data for the January 2000 - April 2020 period asvariables independent from the ARIMAX model. The best model used to predict the JCI from the results of this study is the ARIMAX (1,1,0) -TARCH (1,2) model with an AIC value of -0.819074. 
PERBANDINGAN MODEL REGRESI BINOMIAL NEGATIF BIVARIAT DENGAN MODEL GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL BIVARIAT REGRESSION (GWNBBR) PADA KASUS ANGKA KEMATIAN BAYI DAN KEMATIAN IBU DI JAWA TENGAH Yashmine Noor Islami; Dwi Ispriyanti; Puspita Kartikasari
Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i4.33096

Abstract

Infant mortality (0-11 months) and maternal mortality (during pregnancy, childbirth, and postpartum) are significant indicators in determining the level of public health. Central Java Province which has 35 regencies/cities is included in the top five regions with the highest number of infant and maternal mortality in Indonesia. The data characteristics of the number of infants and maternal mortality are count data. Therefore, the Poisson Regression method can be used to analyze the factors that influence the number of infants and maternal mortality. In Poisson regression analysis, there must be a fulfilled assumption, called equidispersion. Frequently, the variance of count data is greater than the mean, which is known as the overdispersion. The research, binomial negative bivariate regression is used as a solutions to overcome the problem of overdispersion in poisson regression. This method produce a global model. In reality, the geographical, socio-cultural, and economic conditions of each region will be different. This illustrates the effect of spatial heterogeneity, so it needs to be developed into Geographically Weighted Negative Binomial Bivariate Regression (GWNBBR). The model of GWNBBR provides weighting based on the position or distance from one observation area to another. Significant variables for modeling infant mortality cases included the percentage of obstetric complications treated (X1), the percentage of infants who were exclusively breastfed (X3), and the percentage of poor people (X5). Significant variable for modeling maternal mortality cases is the percentage of poor people (X5). Based on the AIC value, GWNBBR model is better than binomial negatif bivariat regression model because it has a smaller AIC value. 

Page 2 of 2 | Total Record : 15


Filter by Year

2021 2021


Filter By Issues
All Issue Vol 13, No 1 (2024): Jurnal Gaussian Vol 12, No 4 (2023): Jurnal Gaussian Vol 12, No 3 (2023): Jurnal Gaussian Vol 12, No 2 (2023): Jurnal Gaussian Vol 12, No 1 (2023): Jurnal Gaussian Vol 11, No 4 (2022): Jurnal Gaussian Vol 11, No 3 (2022): Jurnal Gaussian Vol 11, No 2 (2022): Jurnal Gaussian Vol 11, No 1 (2022): Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian Vol 10, No 3 (2021): Jurnal Gaussian Vol 10, No 2 (2021): Jurnal Gaussian Vol 10, No 1 (2021): Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian Vol 9, No 2 (2020): Jurnal Gaussian Vol 9, No 1 (2020): Jurnal Gaussian Vol 8, No 4 (2019): Jurnal Gaussian Vol 8, No 3 (2019): Jurnal Gaussian Vol 8, No 2 (2019): Jurnal Gaussian Vol 8, No 1 (2019): Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian Vol 7, No 3 (2018): Jurnal Gaussian Vol 7, No 2 (2018): Jurnal Gaussian Vol 7, No 1 (2018): Jurnal Gaussian Vol 6, No 4 (2017): Jurnal Gaussian Vol 6, No 3 (2017): Jurnal Gaussian Vol 6, No 2 (2017): Jurnal Gaussian Vol 6, No 1 (2017): Jurnal Gaussian Vol 5, No 4 (2016): Jurnal Gaussian Vol 5, No 3 (2016): Jurnal Gaussian Vol 5, No 2 (2016): Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian Vol 4, No 4 (2015): Jurnal Gaussian Vol 4, No 3 (2015): Jurnal Gaussian Vol 4, No 2 (2015): Jurnal Gaussian Vol 4, No 1 (2015): Jurnal Gaussian Vol 3, No 4 (2014): Jurnal Gaussian Vol 3, No 3 (2014): Jurnal Gaussian Vol 3, No 2 (2014): Jurnal Gaussian Vol 3, No 1 (2014): Jurnal Gaussian Vol 2, No 4 (2013): Jurnal Gaussian Vol 2, No 3 (2013): Jurnal Gaussian Vol 2, No 2 (2013): Jurnal Gaussian Vol 2, No 1 (2013): Jurnal Gaussian Vol 1, No 1 (2012): Jurnal Gaussian More Issue