Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Adaptive Controller with PID, FOPID, and NPID Compensators for Tracking Control of Electric – Wind Vehicle Shamseldin, Mohamed A.
Journal of Robotics and Control (JRC) Vol 3, No 5 (2022): September
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i5.15855

Abstract

This paper presents a new combination between the Model Reference Adaptive Control (MRAC) with several types of PID’s controllers (PID, Fractional order PID (FOPID), and Nonlinear PID (NPID)) optimized using a new Covid-19 algorithm. The proposed control techniques had been applied on a new model for an electric-wind vehicle, which can catch the wind that blows in the opposite direction of a moving vehicle to receive wind; a wind turbine is installed on the vehicle’s front. The generator converts wind energy into electricity and stores it into a backup battery to switch it when the primary battery is empty. The simulation results prove that the new model of electric–wind vehicles will save power and allow the vehicle to continue moving while the other battery charges. In addition, a comparative study between different types of control algorithms had been developed and investigated to improve the vehicle dynamic response. The comparison shows that the MRAC with the NPID compensator can absorb the nonlinearity (air resistance and wheel friction) where it has a minimum overshoot, rise time, and settling time (35 seconds) among other control techniques compensators (PID and FOPID). 
A New Self-Tuning Nonlinear PID Motion Control for One-Axis Servomechanism with Uncertainty Consideration Shamseldin, Mohamed A.; Abdelghany, Mohamed A.
Journal of Robotics and Control (JRC) Vol 4, No 2 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i2.17433

Abstract

This paper introduces a new study for one-axis servomechanism with consideration the parameter variation and system uncertainty. Also, a new approach for high-performance self-tuning nonlinear PID control was developed to track a preselected profile with high accuracy. Moreover, a comparison study between the proposed control technique and the well-known controllers (PID and Nonlinear PID). The optimal control parameters were determined based on the COVID-19 optimization technique. The parameters of the servomechanism system changed randomly at a preselected range through the online simulation. The change of these parameters acts as the nonlinearity resources (friction, backlash, environmental effects) and system uncertainty. A comparative study between the linear and nonlinear models had been accomplished and investigated. The results show that the proposed controller can track several operating points with high accuracy, low rise time, and small overshoot.
A Low-Cost High Performance Electric Vehicle Design Based on Variable Structure Fuzzy PID Control Shamseldin, Mohamed A.; Araby, Medhat; El-khatib, S.
Journal of Robotics and Control (JRC) Vol 5, No 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.22071

Abstract

This paper introduces the design steps and implementation of Electric Vehicle (EV) based on variable structure fuzzy PID control. The role of fuzzy logic is making change in the membership function to tune the fuzzy action according to the error and change of error. The control implementation was executed using a low-cost Arduino mega 2560 and had been programed by MATLAB SIMULINK.  Also, a nonlinear model for the EV was built and validated by the actual performance of the EV experimental setup. The overall EV closed loop implemented on the MATLAB SIMULINK to select the proper control parameters. The proposed variable structure fuzzy PID control had been compared to the traditional PID control to ensure robustness and reliability. The results show that the proposed control technique can deal with the EV disturbances and continuous change in the operating points.
A Low-Cost High Performance Electric Vehicle Design Based on Variable Structure Fuzzy PID Control Shamseldin, Mohamed A.; Araby, Medhat; El-khatib, S.
Journal of Robotics and Control (JRC) Vol. 5 No. 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.22071

Abstract

This paper introduces the design steps and implementation of Electric Vehicle (EV) based on variable structure fuzzy PID control. The role of fuzzy logic is making change in the membership function to tune the fuzzy action according to the error and change of error. The control implementation was executed using a low-cost Arduino mega 2560 and had been programed by MATLAB SIMULINK.  Also, a nonlinear model for the EV was built and validated by the actual performance of the EV experimental setup. The overall EV closed loop implemented on the MATLAB SIMULINK to select the proper control parameters. The proposed variable structure fuzzy PID control had been compared to the traditional PID control to ensure robustness and reliability. The results show that the proposed control technique can deal with the EV disturbances and continuous change in the operating points.