Henao-Cespedes, Vladimir
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Remote sensing in the analysis between forest cover and COVID-19 cases in Colombia Henao-Céspedes, Vladimir; Garcés-Gómez, Yeison Alberto
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp732-740

Abstract

This article explores the relationship between forest cover and coronavirus disease 2019 (COVID-19) cases in Colombia using remote sensing techniques and data analysis. The study focuses on the CORINE land cover methodology's five main land cover categories: artificial territory, agricultural territories, forests and semi-natural areas, humid areas, and water surfaces. The research methodology involves several phases of the unified method of analytical solutions for data mining (ASUM-DM). Data on COVID-19 cases and forest cover are collected from the Colombian National Institute of Health and Advanced Land Observation Satellite (ALOS PALSAR), respectively. Land cover data is processed using QGIS software. The results indicate an inverse relationship between forest cover and COVID-19 cases, as evidenced by Pearson's index ρ of -0.439 (p-value <0.012). In addition, a negative correlation is observed between case density and forests and semi-natural areas, one of the land cover categories. The findings of this study suggest that higher forest cover is associated with lower numbers of COVID-19 cases in Colombia. The results could potentially inform government organizations and policymakers in implementing strategies and policies for forest conservation and the inclusion of green areas in densely populated urban areas.