Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Bulk power system availability assessment with multiple wind power plants Cepeda, Angie C.; Rios, Mario A.
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i1.pp27-36

Abstract

The use of renewable non-conventional energy sources, as wind electric power energy and photovoltaic solar energy, has introduced uncertainties in the performance of bulk power systems. The power system availability has been employed as a useful tool for planning power systems; however, traditional methodologies model generation units as a component with two states: in service or out of service. Nevertheless, this model is not useful to model wind power plants for availability assessment of the power system. This paper used a statistical representation to model the uncertainty of power injection of wind power plants based on the central moments: mean value, variance, skewness and kurtosis. In addition, this paper proposed an availability assessment methodology based on application of this statistical model, and based on the 2m+1 point estimate method the availability assessment is performed. The methodology was tested on the IEEE-RTS assuming the connection of two wind power plants and different correlation among the behavior of these plants.
Planning multi-terminal direct current grids based graphs theory Rios, Mario A.; Acero, Fredy A.
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i1.pp37-46

Abstract

Transmission expansion planning in AC power systems is well known and employs a variety of optimization techniques and methodologies that have been used in recent years. By contrast, the planning of HVDC systems is a new matter for the interconnection of large power systems, and the interconnection of renewable sources in power systems. Although the HVDC systems has evolved, the first implementations were made considering only the needs of transmission of large quantities of power to be connected to the bulk AC power system. However, for the future development of HVDC systems, meshed or not, each AC system must be flexible to allow the expansion of these for future conditions. Hence, a first step for planning HVDC grids is the planning and development of multi-terminal direct current (MTDC) systems which will be later transformed in a meshed system. This paper presented a methodology that use graph theory for planning MTDC grids and for the selection of connection buses of the MTDC to an existing HVAC transmission system. The proposed methodology was applied to the Colombian case, where the obtained results permit to migrate the system from a single HVDC line to a MTDC grid.