Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Informatika

Sentiment Analysis of Sirekap Application Review Using Logistic Regression Algorithm Hagi, Audi; Rarasati, Dionisia Bhisetya
Jurnal Informatika Vol 11, No 2 (2024): October
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v11i2.22066

Abstract

General Elections (Pemilu) is one of the crucial moments in democracy to elect representatives of the people. The General Elections Commission (KPU) launched the Sirekap application as an aid in the election process. This application allows polling station officers (KPPS) to record the vote count electronically. However, there have been some complaints and feedback from the public regarding the Sirekap application. To understand public sentiment towards the Sirekap application, this study was conducted by analyzing user reviews on the Google Play Store. The Logistic Regression algorithm is used to classify review sentiment into positive and negative. The analysis process involves data preprocessing, z-score normalization, dividing the data set into 80% training data and 20% test data, weighting words using the TF-IDF method, training the model using the Logistic Regression algorithm, and testing the model with a confusion matrix. The results of the analysis show that the Logistic Regression algorithm is effective in classifying the sentiment of the Sirekap application reviews with an accuracy of 91%. The precision score for the positive and negative classes are 90% and 92%, respectively. The recall score for the positive and negative classes are 94% and 87%, respectively. The f1-score for the positive and negative classes are 92% and 90%, respectively. The results of this sentiment analysis can also be used by the KPU to understand the level of user satisfaction and improve the quality of the Sirekap application for the 2024 Regional Head Elections (Pilkada).
Stock Price Prediction on IDX30 Index using Long Short-Term Memory Algorithm William, Ken; Rarasati, Dionisia Bhisetya
Jurnal Informatika Vol 11, No 2 (2024): October
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v11i2.22156

Abstract

The capital market plays a significant role in a country's economy, facilitating corporate financing and providing investment opportunities for the public. One popular investment instrument is stocks, yet many investors struggle to make profitable investment decisions due to a lack of understanding of stock investments. Therefore, predicting stock prices can be a way to determine the future value of a stock. This research aims to address this issue by applying the Long Short-Term Memory (LSTM) algorithm to predict stock prices on the IDX30 index. LSTM is capable of processing sequential data, such as stock price data, complexly because it can store information over long periods. The testing is conducted using various parameters in layers, epochs, and time steps to obtain the best prediction model. The LSTM architecture used consists of four layers: the LSTM layer with 128 neurons, dropout and dense layers with 64 neurons, and an additional dense layer that converts the output from the previous layer into prediction results. This study demonstrates that the LSTM algorithm can accurately predict stock prices based on evaluation metrics such as Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). The best results for PT Bank Central Asia Tbk show a MAPE of 1.14% and RMSE of 137.71, PT Bank Rakyat Indonesia Tbk shows a MAPE of 1.58% and RMSE of 87.4, and PT Bank Mandiri Tbk shows a MAPE of 1.64% and RMSE of 88.26.