Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Information Technology and Computer Science

Evaluation of TF-IDF Algorithm Weighting Scheme in The Qur'an Translation Clustering with K-Means Algorithm R Wahyudi, M Didik
Journal of Information Technology and Computer Science Vol. 6 No. 2: August 2021
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1036.775 KB) | DOI: 10.25126/jitecs.202162295

Abstract

The Al-Quran translation index issued by the Ministry of Religion can be used in text mining to search for similar patterns of Al-Quran translation. This study performs sentence grouping using the K-Means Clustering algorithm and three weighting scheme models of the TF-IDF algorithm to get the best performance of the Tf-IDF algorithm. From the three models of the TF-IDF algorithm weighting scheme, the highest percentage results were obtained in the traditional TF-IDF weighting scheme, namely 62.16% with an average percentage of 36.12% and a standard deviation of 12.77%. The smallest results are shown in the TF-IDF 1 normalization weighting scheme, namely 48.65% with an average percentage of 25.65% and a standard deviation of 10.16%. The smallest standard deviation results in a normalized 2 TF-IDF weighting of 8.27% with an average percentage of 28.15% and the largest percentage weighting of 48.65% which is the same as the normalized TF-IDF 1 weighting.