Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Eksplora Informatika

Analisis Sentimen Calon Presiden Indonesia 2019 Berdasarkan Komentar Publik Di Facebook Eko Budi Santoso; Aryo Nugroho
Jurnal Eksplora Informatika Vol 9 No 1 (2019): Jurnal Eksplora Informatika
Publisher : Bagian Perpustakaan dan Publikasi Ilmiah - Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (671.906 KB) | DOI: 10.30864/eksplora.v9i1.254

Abstract

Dalam penelitian ini akan dilakukan analisis sentimen terhadap calon presiden Indonesia tahun 2019 berdasarkan komentar publik di jejaring sosial Facebook. Selanjutnya akan melalui beberapa tahapan dalam melaukan analisis sentimen, antara lain adalah tahap pengumpulan data, data correction, preprocessing data, dan klasifikasi menggunakan Naïve Bayes Classifier serta dilakukan asosiasi teks. Hasil dari penelitian ini diperoleh bahwa calon presiden Joko Widodo didapatkan postingan sebanyak 40 data dan calon presiden Prabowo Subianto didapatkan 12 data postingan dengan pengumpulan data pada tanggal 17 april 2019 sampai 22 mei 2019. Dari data sebanyak 5.000 komentar yang dipilih secara acak dan melalui tahap preprocessing menghasilkan polaritas sentimen, Joko Widodo memeperoleh 85% untuk sentimen positif, 15% sentimen negatif. Sedangkan Prabowo Subianto memperoleh 76% sentimen positif, dan 24% sentimen negatif. Untuk hasil klasifikasi menggunakan Naïve Bayes Classifier memperoleh hasil tingkat akurasi sebesar 86,4%, serta kata yang berasosiasi dengan kata masyarakat terhadap Joko Widodo didapatkan kata upaya, mental, dan kondisi untuk sentimen positif dan kata pemerintahan, pembangunan, kelompok untuk sentimen negatif. Sedangkan yang berasosiasi dengan kata masyarakat terhadap Prabowo Subianto didapatkan kata sistem, berkomitmen, dan kritis untuk sentimen positif dan kata bodohi, kelayakan, diusung untuk sentimen negatif.
Deteksi Citra Uang Kertas dengan Fitur RGB Menggunakan K-Nearest Neighbor Andhika Ryan Pratama; Muhammad Mustajib; Aryo Nugroho
Jurnal Eksplora Informatika Vol 9 No 2 (2020): Jurnal Eksplora Informatika
Publisher : Bagian Perpustakaan dan Publikasi Ilmiah - Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (562.138 KB) | DOI: 10.30864/eksplora.v9i2.336

Abstract

Mesin pendeteksi uang kertas menjadi salah satu objek yang diperhatikan untuk diteliti dan dikembangkan. Mesin pendeteksi uang kertas Indonesia yang ditemukan seperti di stasiun kereta api di suatu kota, terdapat kegagalan dalam mengenali nilai uang kertas tertentu. Tujuan dari penelitian ini adalah membangun model dari pengenalan nilai uang kertas menggunakan K-Nearest Neighbor (KNN) yang merupakan metode yang paling sederhana dan paling penting dalam pengenalan pola, hal ini ditunjukkan pada akurasi yang diperoleh lebih tinggi dibandingkan metode lainnya seperti Artificial Neural Networks (ANN) dan Feedforward Neural Network (FNN). Model yang diusulkan menggunakan ekstraksi fitur, terdapat beberapa fitur yang digunakan untuk pengenalan uang kertas seperti yang pernah dilakukan menggunakan ekstraksi fitur tekstur. Penelitian ini menggunakan ekstraksi fitur warna. Warna memberikan informasi yang berarti dan nilai-nilai yang penting dalam proses mendeskripsikan suatu objek. Warna yang digunakan adalah Red, Green, Blue (RGB). Hasil disajikan pada dataset 40 gambar uang kertas yang terdiri dari pecahan 2000 rupiah keluaran lama, 2000 rupiah keluaran baru, 5000 rupiah keluaran lama, dan 5000 rupiah keluaran baru. Pendekatan yang diusulkan terlihat kinerja yang cukup baik dengan menggunakan metode KNN. Dari 16 data uji menunjukkan 15 objek uang kertas berhasil dideteksi dengan benar. Akurasi yang dihasilkan sebesar 93,7% dengan nilai K=5.