Ibraheem, Kais Ismail
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JUITA : Jurnal Informatika

Handling Noise Data with PCA Method and Optimization Using Hybrid Fuzzy C-Means and Genetic Algorithm Widianti, Risa; Surono, Sugiyarto; Ibraheem, Kais Ismail
JUITA: Jurnal Informatika JUITA Vol. 12 No. 2, November 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i2.21765

Abstract

The significance of machine learning (ML) and data mining techniques particularly clustering is examined in this research, in managing large data sets for customer segmentation in the retail sector. The research emphasizes the challenges posed by data noise and proposes a solution using Principal Component Analysis (PCA) to improve accuracy. This study introduces a hybrid approach that combines Fuzzy C-Means (FCM) with genetic algorithms for optimization in customer segmentation, and suggests further research on the optimal number of clusters and data noise elimination. By addressing data noise, the proposed PCA-based method achieved a higher accuracy rate of 98% compared to 93% without PCA. This finding underscores the effectiveness of PCA in noise reduction, improving clustering accuracy. This research contributes to the advancement of customer-focused business strategies through better data analysis and interpretation. The proposed approach has potential applications in areas including data analysis, pattern recognition, and image processing, highlighting its relevance in the contemporary business environment.