Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Mechatronics, Electrical Power, and Vehicular Technology

Robust remaining useful life prediction of lithium-ion battery with convolutional denoising autoencoder Yuliani, Asri Rizki; Pardede, Hilman Ferdinandus; Ramdan, Ade; Zilvan, Vicky; Yuwana, Raden Sandra; Amri, M Faizal; Kusumo, R. Budiarianto Suryo; Pramanik, Subrata
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 1 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.905

Abstract

Using lithium-ion (Li-ion) batteries exceeding their useful lifetime may be dangerous for users, and hence, developing an accurate prediction system for batteries that remain useful for life is necessary. Many deep learning models, such as gated recurrent units and long short-term memory (LSTM), have been proposed for that purpose and have shown good results. However, their performance when dealing with noisy data degrades significantly. This may hamper their implementations for the real world since battery data are prone to noise. In this paper, we develop a robust prediction model in a noisy environment for predicting the remaining useful life (RUL) of Li-ion batteries. We propose a denoising autoencoder (DAE) utilized to remove noise from the data. The DAE is built with convolutional layers instead of traditional feed-forward networks here. We combine DAE with LSTM as the predictor. The proposed framework is evaluated using artificially corrupted battery data provided by National Aeronautics and Space Administration (NASA). The results reveal that our proposed method improves robustness when data contain various types of noise. A comparative study using the traditional approach has also been conducted. Our evaluation shows that convolutional layers are more effective than the traditional approach and that the original composition of the DAE was built using traditional feed-forward networks. DAE with convolutional layers has the best average performance with MSE of 0.61 and is the most consistent model.
Distracted driver behavior recognition using modified capsule networks Kadar, Jimmy Abdel; Dewi, Margareta Aprilia Kusuma; Suryawati, Endang; Heryana, Ana; Zilfan, Vicky; Kusumo, Budiarianto Suryo; Yuwana, Raden Sandra; Supianto, Ahmad Afif; Pratiwi, Hasih; Pardede, Hilman Ferdinandus
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 2 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.177-185

Abstract

Human activity recognition (HAR) is an increasingly active study field within the computer vision community. In HAR, driver behavior can be detected to ensure safe travel. Detect driver behaviors using a capsule network with leave-one-subject-out validation. The study was done using CapsNet with leave-one-subject-out validation to identify driving habits. The proposed method in this study consists of two parts, namely encoder and decoder. The encoder used in this study modifies Sabour’s capsule network architecture by adding a convolution layer before going to the primary capsule layer. The proposed method is evaluated using a primary dataset with 10 classes and 300 images for each class. The dataset is split based on hold-out validation and leave-one-subject-out validation. The resulting models were then compared to conventional CNN architecture. The objective of the research is to identify driving behavior. In this study, the proposed method results an accuracy rate of 97.83 % in the split dataset using hold-out validation. However, the accuracy decreased by 53.11 % when the proposed method was used on a split dataset using leave-one-subject-out validation. This is because the proposed method extracts all features including the attributes of each participant contained in the input image (user-independent). Thus, the resulting model in this study tends to overfit.