Lachgar, Mohamed
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Optimizing olive disease classification through transfer learning with unmanned aerial vehicle imagery Raouhi, El Mehdi; Lachgar, Mohamed; Hrimech, Hamid; Kartit, Ali
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp891-903

Abstract

Early detection of diseases in growing olive trees is essential for reducing costs and increasing productivity in this crucial economic activity. The quality and quantity of olive oil depend on the health of the fruit, making accurate and timely information on olive tree diseases critical to monitor growth and anticipate fruit output. The use of unmanned aerial vehicles (UAVs) and deep learning (DL) has made it possible to quickly monitor olive diseases over a large area indeed of limited sampling methods. Moreover, the limited number of research studies on olive disease detection has motivated us to enrich the literature with this work by introducing new disease classes and classification methods for this tree. In this study, we present a UAV system using convolutional neuronal network (CNN) and transfer learning (TL). We constructed an olive disease dataset of 14K images, processed and trained it with various CNN in addition to the proposed MobileNet-TL for improved classification and generalization. The simulation results confirm that this model allows for efficient diseases classification, with a precision accuracy achieving 99% in validation. In summary, TL has a positive impact on MobileNet architecture by improving its performance and reducing the training time for new tasks.
Machine learning for real-time prediction of complications induced by flexible uretero-renoscopy with laser lithotripsy Baidada, Chafik; Hrimech, Hamid; Aatila, Mustapha; Lachgar, Mohamed; Ommane, Younes
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp971-982

Abstract

It is not always easy to predict the outcome of a surgery. Peculiarly, when talking about the risks associated to a given intervention or the possible complications that it may bring about. Thus, predicting those potential complications that may arise during or after a surgery will help minimize risks and prevent failures to the greatest extent possible. Therefore, the objectif of this article is to propose an intelligent system based on machine learning, allowing predicting the complications related to a flexible uretero-renoscopy with laser lithotripsy for the treatment of kidney stones. The proposed method achieved accuracy with 100% for training and, 94.33% for testing in hard voting, 100% for testing and 95.38% for training in soft voting, with only ten optimal features. Additionally, we were able to evaluted the machine learning model by examining the most significant features using the shpley additive explanations (SHAP) feature importance plot, dependency plot, summary plot, and partial dependency plots.