Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

The effect of training set size in authorship attribution: application on short arabic texts Mohammed Al-Sarem; Abdel-Hamid Emara
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 1: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (854.785 KB) | DOI: 10.11591/ijece.v9i1.pp652-659

Abstract

Authorship attribution (AA) is a subfield of linguistics analysis, aiming to identify the original author among a set of candidate authors. Several research papers were published and several methods and models were developed for many languages. However, the number of related works for Arabic is limited. Moreover, investigating the impact of short words length and training set size is not well addressed. To the best of our knowledge, no published works or researches, in this direction or even in other languages, are available. Therefore, we propose to investigate this effect, taking into account different stylomatric combination. The Mahalanobis distance (MD), Linear Regression (LR), and Multilayer Perceptron (MP) are selected as AA classifiers. During the experiment, the training dataset size is increased and the accuracy of the classifiers is recorded. The results are quite interesting and show different classifiers behaviours. Combining word-based stylomatric features with n-grams provides the best accuracy reached in average 93%.