Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : CommIT (Communication

Exploring the Best Parameters of Deep Learning for Breast Cancer Classification System Andry Chowanda
CommIT (Communication and Information Technology) Journal Vol. 16 No. 2 (2022): CommIT Journal
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v16i2.8174

Abstract

Breast cancer is one of the deadliest cancers in the world. It is essential to detect the signs of cancer as early as possible, to make the survival rate higher. However, detecting the signs of breast cancer using the machine or deep learning algorithms from the diagnostic imaging results is not trivial. Slight changes in the illumination of the scanned area can significantly affect the automatic breast cancer classification process. Hence, the research aims to propose an automatic classifier for breast cancer from digital medical imaging (e.g., Positron Emission Tomography or PET, X-Ray of Mammogram, and Magnetic Resonance Imaging (MRI) images). The research proposes modified deep learning architecture with five different settings to model automatic breast cancer classifiers. In addition, five machine learning algorithms are also explored to model the classifiers. The dataset used in the research is the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM). A total of 2,676 mammogram images are used in the research and are split into 80%:20% (2,141:535) for training and testing datasets. The results demonstrate that the model trained with eight layers of Convolutional Neural Networks (CNN) (SET-8) achieves the best accuracy score of 94.89% and 93.75% in the training and validation dataset, respectively.
Emotion Intensity Value Prediction with Machine Learning Approach on Twitter Rindy Claudia Setiawan; Andry Chowanda
CommIT (Communication and Information Technology) Journal Vol. 17 No. 2 (2023): CommIT Journal
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v17i2.8503

Abstract

Recognizing the intensity of the emotions is a paramount task for an affective system. By recognizing the intensity of the emotions, the system can have better human-computer interaction. The research explores several machine learning approaches with several different feature extraction method combinations to solve the emotion intensity prediction task while also analyzing and comparing it with several previous related papers. The research uses the dataset provided through theWASSA 2017 and SemEval 2018 competition. The dataset utilizes four of the eight basic emotions that Plutchik defines (anger, fear, joy, and sadness). The total data result in 19,736 rows of entry, with a total of 10,715 (54.3%) for training, 1,811 (9.17%) for validation, and 7,210 (36.53%) for testing. Three feature extraction methods are used and compared: N-gram, TFIDF, and Bag-of-Words. Meanwhile, machine learning algorithms are Linear Regression, Ridge Regression, KNearest Neighbor for Regression, Regression Tree, and Support Vector Regression (SVR). The results show that SVR with TF-IDF features has the best result of all attempted experiments, with a Pearson correlation score of 0.755 for all data and 0.647 for gold labels data. The final model also accepts newly seen data and displays the corresponding emotion label and intensity.