Alia Karim Abdul Hassan
University of Technology

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Modern drowsiness detection techniques: a review Sarah Saadoon Jasim; Alia Karim Abdul Hassan
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2986-2995

Abstract

According to recent statistics, drowsiness, rather than alcohol, is now responsible for one-quarter of all automobile accidents. As a result, many monitoring systems have been created to reduce and prevent such accidents. However, despite the huge amount of state-of-the-art drowsiness detection systems, it is not clear which one is the most appropriate. The following points will be discussed in this paper: Initial consideration should be given to the many sorts of existing supervised detecting techniques that are now in use and grouped into four types of categories (behavioral, physiological, automobile and hybrid), Second, the supervised machine learning classifiers that are used for drowsiness detection will be described, followed by a discussion of the advantages and disadvantages of each technique that has been evaluated, and lastly the recommendation of a new strategy for detecting drowsiness.
Driving sleepiness detection using electrooculogram analysis and grey wolf optimizer Sarah Saadoon Jasim; Alia Karim Abdul Hassan
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6034-6044

Abstract

In modern society, providing safe and collision-free travel is essential. Therefore, detecting the drowsiness state of the driver before its ability to drive is compromised. For this purpose, an automated hybrid sleepiness classification system that combines the artificial neural network and gray wolf optimizer is proposed to distinguish human Sleepiness and fatigue. The proposed system is tested on data collected from 15 drivers (male and female) in alert and sleep-deprived conditions where physiological signals are used as sleep markers. To evaluate the performance of the proposed algorithm, k-nearest neighbors (k-NN), support vector machines (SVM), and artificial neural networks (ANN) classifiers have been used. The results show that the proposed hybrid method provides 99.6% accuracy, while the SVM classifier provides 93.0% accuracy when the kernel is (RBF) and outlier (0.1). Furthermore, the k-NN classifier provides 96.7% accuracy, whereas the standalone ANN algorithm provides 97.7% accuracy.
A survey on bio-signal analysis for human-robot interaction Huda Mustafa Radha; Alia Karim Abdul Hassan
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5998-6009

Abstract

The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of each domain's benefits and drawbacks, and finally, a recommendation for a new strategy for robotic systems.