Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Design and Implementation of Wheelchair Controller Based Electroencephalogram Signal using Microcontroller M. I. Arzak; U. Sunarya; S. Hadiyoso
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 6: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (360.606 KB) | DOI: 10.11591/ijece.v6i6.pp2878-2886

Abstract

Wheelchair is a medical device that can help patients, especially for persons with physical disabilities. In this research has designed a wheelchair that can be controlled using brain wave. Mind wave device is used as a sensor to capture brain waves. Fuzzy method is used to process data from mind wave. In the design was used a modified wheelchair (original wheelchair modified with addition dc motor that can be control using microcontroller ). After processing data from mindwave using fuzzy method, then microcontroller ordered dc motor to rotate.The dc motor connected to gear of wheelchair using chain. So when the dc motor rotated the wheelchair rotated as well.  Controlling of DC motor used PID control method. Input encoder was used as feedback for PID control at each wheel.From the experimental results concentration level data of the human brain waves can be used to adjust the rate of speed of the wheelchair. The level accuracy of respons Fuzzy method ton system obtained by devide total true respons data with total tested data and the result is 85.71 %.  Wheelchairs can run at a maximum speed of 31.5 cm/s when the battery voltage is more than 24.05V. Moreover, the maximum load of wheelchair is 110 kg.
Internet of Things: Low Cost and Wearable SpO2 Device for Health Monitoring R. R. Adiputra; S. Hadiyoso; Y. Sun Hariyani
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 2: April 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (709.164 KB) | DOI: 10.11591/ijece.v8i2.pp939-945

Abstract

This paper discusses a device for measuring oxygen saturation (SpO2) and heart rate as parameters of the representations of heart conditions. SpO2 device that have been made has a small dimension, wearable and high mobility with battery as the main power source. The device connects to a node MCU as a data processor and an internet network gateway to support internet of things applications. Data sent to the Internet cloud can be accessed online and real time via website for further analysis. The error rate at heart rate measurement is ± 2.8 BPM and for oxygen saturation (SpO2) is ± 1.5%. Testing data transmission delay until it can be displayed on website is 3 second that depends on internet traffic conditions.