Mamdouh El Haj Assad
University of Sharjah

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Experimental study of the impact of dust on azimuth tracking solar PV in Sharjah Mohamed A. M. Abdelsalam; Fahad Faraz Ahmad; Abdul-Kadir Hamid; Chaouki Ghenai; Oussama Rejeb; Monadhel Alchadirchy; Waleed Obaid; Mamdouh El Haj Assad
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3671-3681

Abstract

Dust is one of the significant constraints in utilizing solar photovoltaic systems under harsh weather conditions in the desert regions due to creating a shadow that blocks solar irradiance from reaching solar cells and consequently, significantly reducing their efficiency. In this research, experimental study was performed to comprehend the nature of dust particles and their impact on the electrical power output that is generated from azimuth tracking solar PV modules under Sharjah environmental conditions in winter season. According to laboratory experiments, the power losses are linearly related to the dust accumulated density on the surface of the solar panel with a slope of 1.27% per g/m2. The conducted Outdoor studies revealed that the absolute reduction in output power increased by 8.46% after 41 continuous days with one low-intensity rainy day. The linear relationship obtained from indoor experiments was applied later to estimate the dust deposited density on the outdoor setup. The results showed that a regular cleaning process every two weeks is recommended to maintain the performance and to avoid the soiling loss. This work will help engineers in the solar PV plants to forecast the dust impact and figure out the regularity of the cleaning process in case of single axis tracking systems.
Design of a thermoelectric energy source for water pumping applications: A case study in Sharjah, United Arab Emirates Waleed Obaid; Abdul-Kadir Hamid; Chaouki Ghenai; Mamdouh El Haj Assad
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp4751-4758

Abstract

There are many water pumping power systems that exist nowadays relying on conventional and renewable energy sources such as mechanical windmills, solar photovoltaic (PV) panels, wind turbines, and diesel generators. Few designs utilize thermoelectric modules for the purpose of enhancing the reliability and the performance of the system in order to provide water supply to isolated zones continuously. The use of thermoelectric (TE) modules is increasing due to their reduced prices and the possibility of using them in different applications depending on the required specifications of motors and other connected loads. This paper proposes a renewable energy system design for water pumping applications in Sharjah (Latitude 25.29°N and Longitude 55°E), United Arab Emirates. The system involves TE modules for operating the three-phase AC water pumping motor, voltage regulator, voltage boost converter, and three-phase power inverter while considering the changes of temperature values which affect the performance of the thermoelectric generator (TEG) modules. The aim is integrating TEG modules to cover the increasing demand of water in rural areas since rainy days in Sharjah are limited and the temperature is high. The performances of the proposed system will be demonstrated using Simulink simulations for the overall blocks of the proposed system.