Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Artificial neural network based unity power factor corrector for single phase DC-DC converters Hussain Attia
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (927.348 KB) | DOI: 10.11591/ijece.v10i4.pp4145-4154

Abstract

Due to the negative effects of the non-linear semiconductor devices and the passive electrical components (inductor and capacitor) in the converter circuits, and that are deteriorating the power factor (PF) and total harmonics distortion (THD) of grid current, this study proposes a novel unity PF correction controller based on a new algorithm of neural network to improve the performance of a single phase boost DC-DC converter with respect to the mentioned concerns. The controller guarantees stable load voltage. The PF corrector, firstly measures the phase shift between grid voltage and grid current waveforms, then through a new artificial neural network (ANN) algorithm, a suitable duty cycle is predicted to guide and control the converter to reduce the phase shift between grid voltage and grid current as possible to have maximum PF which is unity PF, and to improve the THD level of grid current. The proposed system is simulated and evaluated via Simulink of MATLAB, the simulation results are collected at constant duty cycle and at controlled duty cycle through the proposed PF controller using different loads. The presented PF controller guarantees the unity power factor, and enhances the grid alternating current THD.
Bipolar and unipolar schemes for confined band variable switching frequency PWM based inverter Hussain Attia; Hang Seng Che; Tan Kheng Suan Freddy; Ahmad Elkhateb
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3763-3771

Abstract

The single phase inverter performance through the unipolar and bipolar strategies has been previously analyzed based on the constant switching frequency pulse width modulation (CSFPWM). However, the confined band variable switching frequency PWM (CB-VSFPWM) is currently proposed as a new variable switching frequency PWM technique through unipolar strategy to facilitate the design of high order filter, to reduce the switching losses, and to reduce the current total harmonics distortion (THD) as well. To evaluate the performance of a single phase inverter based on the CBVSFPWM through bipolar strategy, this paper presents a comparative study of the CB-VSFPWM based inverter performance using the unipolar PWM and the bipolar PWM strategies. The study adopts MATLAB/Simulink to simulate the inverter and to analyze the simulation results in terms of harmonics spectrum, total harmonic distortion (THD), and fundamental components. The analysis of the study results gives an indication about the appropriate type of CB-VSFPWM strategy (unipolar PWM or bipolar PWM) to guarantee the desired performance of the connected inverter in terms of the electrical grid standards like THD, and harmonics spectrum of the inverter current.
Implementation of sequential design based water level monitoring and controlling system Hussain Attia; Beza Getu; Abdullah Asaad; Ahmed Abbas; Mahmoud Al Nuaimi; Abdulhadi Brazi
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 2: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (621.618 KB) | DOI: 10.11591/ijece.v9i2.pp967-972

Abstract

In currently decades, water usage either for domestic or commercial purposes is facing critical conditions which negatively affects the sustainability of our environment. From this point of view, reducing water consumptions will participate in the solution of water saving. Monitoring and controlling the tank water level are important functions which effect and work on reduction of water consumption.  Many studies in literature focus on proposing a high performance water level monitoring and controlling systems based on either computerized units or microcontroller units. However these systems are characterized by complexity and high cost. In this paper, a highly flexible implemented electronic system is introduced based on sequential design by using general purpose discrete components. The proposed system present simple design of water level sensing stage, in addition, this paper showing full design, simulation, and implementation steps of an automation system which is able to control switching the state of the water pump in accordance to the current level of water in the tank.
Design of computerized monitoring and processing system for magnetic field controlling against the phenomenon of black powder in crude oil pipelines Hussain Attia; Saad Balhassan
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (694.649 KB) | DOI: 10.11591/ijece.v10i5.pp4639-4644

Abstract

Black power represents the main difficulty faced by the oil flow in pipelines. The negative effect of this powder reaches to stop the oil flow due to clogging the pipelines, in addition to the damaging of the crude oil pumps. Many solutions have been proposed in literature based on chemical or physical processes. On the other side, applying the fixed magnetic field has been presented in separation and extraction process of metal impurities in water pipelines applications. From these facts, this paper proposes an alternative solution (idea, design, and methodology for future implementation) for the black power removing from oil pipelines. The proposed system works on firstly sensing the resistivity parameter in the crude oil as an indication about the oil status with respect to the quantity of the black powder particles, then works on monitoring and controlling the level, location, and polarity of the required magnetic field that to work on cracking particles cracking function that in order to facilitate the crude oil motion in the pipelines. In addition, the proposed solution presents a new design of electrical resistivity sensor as an important indication in terms of evaluating the proposed system performance