Khalid Alissa
Imam Abdulrahman bin Faisal University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Effective classification of birds’ species based on transfer learning Mohammed Alswaitti; Liao Zihao; Waleed Alomoush; Ayat Alrosan; Khalid Alissa
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp4172-4184

Abstract

In recent years, with the deterioration of the earth’s ecological environment, the survival of birds has been more threatened. To protect birds and the diversity of species on earth, it is urgent to build an automatic bird image recognition system. Therefore, this paper assesses the performance of traditional machine learning and deep learning models on image recognition. Also, the help-ability of transfer learning in the field of image recognition is tested to evaluate the best model for bird recognition systems. Three groups of classifiers for bird recognition were constructed, namely, classifiers based on the traditional machine learning algorithms, convolutional neural networks, and transfer learning-based convolutional neural networks. After experiments, these three classifiers showed significant differences in the classification effect on the Kaggle-180-birds dataset. The experimental results finally prove that deep learning is more effective than traditional machine learning algorithms in image recognition as the number of bird species increases. Besides, the obtained results show that when the sample data is small, transfer learning can help the deep neural network classifier to improve classification accuracy.
Enhancing three variants of harmony search algorithm for continuous optimization problems Alaa A. Alomoush; Abdul Rahman A. Alsewari; Kamal Z. Zamli; Ayat Alrosan; Waleed Alomoush; Khalid Alissa
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2343-2349

Abstract

Meta-heuristic algorithms are well-known optimization methods, for solving real-world optimization problems. Harmony search (HS) is a recognized meta-heuristic algorithm with an efficient exploration process. But the HS has a slow convergence rate, which causes the algorithm to have a weak exploitation process in finding the global optima. Different variants of HS introduced in the literature to enhance the algorithm and fix its problems, but in most cases, the algorithm still has a slow convergence rate. Meanwhile, opposition-based learning (OBL), is an effective technique used to improve the performance of different optimization algorithms, including HS. In this work, we adopted a new improved version of OBL, to improve three variants of Harmony Search, by increasing the convergence rate speed of these variants and improving overall performance. The new OBL version named improved opposition-based learning (IOBL), and it is different from the original OBL by adopting randomness to increase the solution's diversity. To evaluate the hybrid algorithms, we run it on benchmark functions to compare the obtained results with its original versions. The obtained results show that the new hybrid algorithms more efficient compared to the original versions of HS. A convergence rate graph is also used to show the overall performance of the new algorithms.
Spatial information of fuzzy clustering based mean best artificial bee colony algorithm for phantom brain image segmentation Waleed Alomoush; Ayat Alrosan; Ammar Almomani; Khalid Alissa; Osama A. Khashan; Ahmad Al-nawasrah
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp4050-4058

Abstract

Fuzzy c-means algorithm (FCM) is among the most commonly used in the medical image segmentation process. Nevertheless, the traditional FCM clustering approach has been several weaknesses such as noise sensitivity and stuck in local optimum, due to FCM hasn’t able to consider the information of contextual. To solve FCM problems, this paper presented spatial information of fuzzy clustering-based mean best artificial bee colony algorithm, which is called SFCM-MeanABC. This proposed approach is used contextual information in the spatial fuzzy clustering algorithm to reduce sensitivity to noise and its used MeanABC capability of balancing between exploration and exploitation that is explore the positive and negative directions in search space to find the best solutions, which leads to avoiding stuck in a local optimum. The experiments are carried out on two kinds of brain images the Phantom MRI brain image with a different level of noise and simulated image. The performance of the SFCM-MeanABC approach shows promising results compared with SFCM-ABC and other stats of the arts.