Maytham N. Meqdad
Al-Mustaqbal University College

Published : 11 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Cyber physical systems: A smart city perspective Firoz Khan; R. Lakshmana Kumar; Seifedine Kadry; Yunyoung Nam; Maytham N. Meqdad
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3609-3616

Abstract

Cyber-physical system (CPS) is a terminology used to describe multiple systems of existing infrastructure and manufacturing system that combines computing technologies (cyber space) into the physical space to integrate human interaction. This paper does a literature review of the work related to CPS in terms of its importance in today’s world. Further, this paper also looks at the importance of CPS and its relationship with internet of things (IoT). CPS is a very broad area and is used in variety of fields and some of these major fields are evaluated. Additionally, the implementation of CPS and IoT is major enabler for smart cities and various examples of such implementation in the context of Dubai and UAE are researched. Finally, security issues related to CPS in general are also reviewed.
Autonomous vehicles: A study of implementation and security Firoz Khan; R. Lakshmana Kumar; Seifedine Kadry; Yunyoung Nam; Maytham N. Meqdad
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3013-3021

Abstract

Autonomous vehicles have been invented to increase the safety of transportation users. These vehicles can sense their environment and make decisions without any external aid to produce an optimal route to reach a destination. Even though the idea sounds futuristic and if implemented successfully, many current issues related to transportation will be solved, care needs to be taken before implementing the solution. This paper will look at the pros and cons of implementation of autonomous vehicles. The vehicles depend highly on the sensors present on the vehicles and any tampering or manipulation of the data generated and transmitted by these can have disastrous consequences, as human lives are at stake here. Various attacks against the different type of sensors on-board an autonomous vehicle are covered.
Performance analysis of sentiments in Twitter dataset using SVM models Lakshmana Kumar Ramasamy; Seifedine Kadry; Yunyoung Nam; Maytham N. Meqdad
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2275-2284

Abstract

Sentiment Analysis is a current research topic by many researches using supervised and machine learning algorithms. The analysis can be done on movie reviews, twitter reviews, online product reviews, blogs, discussion forums, Myspace comments and social networks. The Twitter data set is analyzed using support vector machines (SVM) classifier with various parameters. The content of tweet is classified to find whether it contains fact data or opinion data. The deep analysis is required to find the opinion of the tweets posted by the individual. The sentiment is classified in to positive, negative and neutral. From this classification and analysis, an important decision can be made to improve the productivity. The performance of SVM radial kernel, SVM linear grid and SVM radial grid was compared and found that SVM linear grid performs better than other SVM models.
Classification of electroencephalography using cooperative learning based on participating client balancing Maytham N. Meqdad; Saif O. Husain; Alyaa Mohammed Jawad; Seifedine Kadry; Ahlam R. Khekan
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp4692-4699

Abstract

Modern technologies are widely used today to diagnose epilepsy, neurological disorders, and brain tumors. Meanwhile, it is not cost-effective in terms of time and money to use a large amount of electroencephalography (EEG) data from different centers and collect them in a central server for processing and analysis. Collecting this data correctly is challenging, and organizations avoid sharing their and client information with others due to data privacy protection. It is difficult to collect these data correctly and it is challenging to transfer them to research centers due to the privacy of the data. In this regard, collaborative learning as an extraordinary approach in this field paves the way for the use of information repositories in research matters without transferring the original data to the centers. This study focuses on the use of a heterogeneous client balancing technique with an interval selection approach and classification of EEG signals with ResNet50 deep architecture. The test results achieved an accuracy of 99.14 compared to similar methods.